Background: Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents.
View Article and Find Full Text PDFThe insertion of cochlear implants (CIs) often causes fibrous tissue growth around the electrode, which leads to attenuation of function of CIs. Inhibition of fibrosis in vivo using dexamethasone (Dex) released from the implant base material (polydimethylsiloxane [PDMS]) coated with a protein repelling hydrogel (star-shaped polyethylene glycol prepolymer, sPEG) was, therefore, the aim of the study. PDMS filaments with Dex or sPEG were implanted into guinea pigs.
View Article and Find Full Text PDFNeuron counting in the cochlea is a crucial but time-consuming operation for which various methods have been developed. To improve simplicity and efficiency, we tested an imaging method of the cochlea, and based on Confocal Laser Scanning Microscopy (CLSM), we visualised Rosenthal's Canal and quantified the spiral ganglion neurons (SGN) within. Cochleae of 8 normal hearing guinea pigs and one implanted with a silicone filament were fixed in paraformaldehyde (PFA), decalcified, dehydrated and cleared in Spalteholz solution.
View Article and Find Full Text PDFThe insertion of cochlear implants into the inner ear often causes inflammation and fibrosis inside the scala tympani and thus growth of fibrous tissue on the implant surface. This deposition leads to the loss of function in both electrical and laser-based implants. The design of this study was to realize fibroblast growth inhibition by dexamethasone (Dex) released from the base material of the implant [polydimethylsiloxane (PDMS)].
View Article and Find Full Text PDF