Publications by authors named "Antonin V Tutter"

Embryonic stem (ES) cells require a coordinated network of transcription factors to maintain pluripotency or trigger lineage specific differentiation. Central to these processes are the proteins Oct4, Nanog, and Sox2. Although the transcriptional targets of these factors have been extensively studied, very little is known about how the proteins themselves are regulated, especially at the post-translational level.

View Article and Find Full Text PDF

Large networks of proteins govern embryonic stem (ES) cell pluripotency. Recent analysis of the critical pluripotency factors Oct4 and Nanog has identified their interaction with multiple transcriptional repression complexes, including members of the mSin3A-HDAC complex, suggesting that these factors could be involved in the regulation of Oct4/Nanog function. mSin3A is critical for embryonic development, but the mechanism by which the mSin3A-HDAC complex is able to regulate ES cell pluripotency is undefined.

View Article and Find Full Text PDF

Nanog, Oct4, and Sox2 form the core of a transcription factor network that maintains embryonic stem cells in the pluripotent state in both humans and mice. These critical factors have been implicated as both positive and negative regulators of transcription, varying by promoter and differentiation state of the cell. The Mediator complex, a ubiquitous conserved complex of approximately 30 subunits, facilitates transcription by coordinating RNA polymerase II binding to target promoters via gene-specific activators and can be divided into several functional subcomplexes.

View Article and Find Full Text PDF

Mcm10 plays a key role in initiation and elongation of eukaryotic chromosomal DNA replication. As a first step to better understand the structure and function of vertebrate Mcm10, we have determined the structural architecture of Xenopus laevis Mcm10 (xMcm10) and characterized each domain biochemically. Limited proteolytic digestion of the full-length protein revealed N-terminal-, internal (ID)-, and C-terminal (CTD)-structured domains.

View Article and Find Full Text PDF

Cytoplasmic egg extracts from the frog Xenopus laevis represent a powerful cell-free system to study eukaryotic chromosomal DNA replication. In the classical approach, sperm chromatin is added to unfractionated egg cytoplasm, leading to the assembly of transport-competent nuclei that undergo a single, complete round of DNA replication. The need for nuclei in this system has been circumvented.

View Article and Find Full Text PDF

Current stem-cell research has the potential to lead to new approaches for the treatment of cardiovascular, neurodegenerative and musculoskeletal diseases, as well as diabetes and cancer. Stem-cell-based approaches could be employed in cell-replacement therapy or in drug treatments that encourage adult stem cells to migrate and activate at a site of injury or disease. For such therapeutic approaches to be successful, a greater understanding of the signaling pathways that determine the diverse developmental fates of these cells is needed.

View Article and Find Full Text PDF

Little is known about the architecture and biochemical composition of the eukaryotic DNA replication fork. To study this problem, we used biotin-streptavidin-modified plasmids to induce sequence-specific replication fork pausing in Xenopus egg extracts. Chromatin immunoprecipitation was employed to identify factors associated with the paused fork.

View Article and Find Full Text PDF

The initiation of eukaryotic DNA replication involves origin recruitment and activation of the MCM2-7 complex, the putative replicative helicase. Mini-chromosome maintenance (MCM)2-7 recruitment to origins in G1 requires origin recognition complex (ORC), Cdt1, and Cdc6, and activation at G1/S requires MCM10 and the protein kinases Cdc7 and S-Cdk, which together recruit Cdc45, a putative MCM2-7 cofactor required for origin unwinding. Here, we show that the Xenopus BRCA1 COOH terminus repeat-containing Xmus101 protein is required for loading of Cdc45 onto the origin.

View Article and Find Full Text PDF

The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session32jq9maurpst598hv3e058jf0q0ib1qe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once