There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow.
View Article and Find Full Text PDFAssessment of aerosols effects on liver CYP function generally involves aqueous fractions (AF). Although easy and efficient, this method has not been optimized recently or comparatively assessed against other aerosol exposure methods. Here, we comparatively evaluated the effects of the AFs of cigarette smoke (CS) and Tobacco Heating System (THS) aerosols on CYP activity in liver spheroids.
View Article and Find Full Text PDFThe dose of inhaled materials delivered to the respiratory tract is to a large extent a function of the kinetics of particle deposition and gas dissolution on or in the airway and lung epithelia, and therefore of the structural and functional properties of the respiratory tract. In vitro aerosol exposure systems commonly do not simulate these properties, which may result in the delivery of non-realistic, non-human-relevant doses of inhalable test substances to the in vitro biological test systems. We developed a new-generation in vitro aerosol exposure system, the InHALES, that can, like the human respiratory tract, actively breathe, operate medical inhalers, or take puffs from tobacco products.
View Article and Find Full Text PDFHigh-content imaging (HCI) is a powerful method for quantifying biological effects in vitro. Historically, HCI has been applied to adherent cells growing in monolayers. With the advent of confocal versions of HCI devices, researchers now have the option of performing analyses on 3D cell cultures.
View Article and Find Full Text PDFThe merging of three-dimensional in vitro models with multi-organ-on-a-chip (MOC) technology has taken in vitro assessment of chemicals to an unprecedented level. By connecting multiple organotypic models, MOC allows for the crosstalk between different organs to be studied to evaluate a compound's safety and efficacy better than with single cultures. The technology could also improve the toxicological assessment of aerosols that have been implicated in the development of chronic obstructive pulmonary disease, asthma, or lung cancer.
View Article and Find Full Text PDF