Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties the Nrf2 pathway.
View Article and Find Full Text PDFThe seemingly random and unpredictable nature of seizures is a major debilitating factor for people with epilepsy. An increasing body of evidence demonstrates that the epileptic brain exhibits long-term fluctuations in seizure susceptibility, and seizure emergence seems to be a consequence of processes operating over multiple temporal scales. A deeper insight into the mechanisms responsible for long-term seizure fluctuations may provide important information for understanding the complex nature of seizure genesis.
View Article and Find Full Text PDFWe have demonstrated previously that activation of either the ET or ET receptor can induce acute electrographic seizures following the intrahippocampal infusion of endothelin-1 (ET-1) in immature (P12) rats. We also demonstrated that activation of the ET receptor is associated with marked focal ischemia, while activation of the ET receptor is not. Exploring the mechanisms underlying seizures induced by these two ET-1 receptor interactions can potentially provide insight into how focal ischemia in immature animals produces seizures and whether ischemiarelated seizures differ from seizures not associated with ischemia.
View Article and Find Full Text PDFPathological high-frequency oscillations are a novel marker used to improve the delineation of epileptogenic tissue and, hence, the outcome of epilepsy surgery. Their practical clinical utilization is curtailed by the inability to discriminate them from physiological oscillations due to frequency overlap. Although it is well documented that pathological HFOs are suppressed by antiepileptic drugs (AEDs), the effect of AEDs on normal HFOs is not well known.
View Article and Find Full Text PDF