Background: The mammalian retina contains an autonomous circadian clock that controls various aspects of retinal physiology and function, including dopamine (DA) release by amacrine cells. This neurotransmitter plays a critical role in retina development, visual signalling, and phase resetting of the retinal clock in adulthood. Interestingly, bidirectional regulation between dopaminergic cells and melanopsin-expressing retinal ganglion cells has been demonstrated in the adult and during development.
View Article and Find Full Text PDFDaily rhythms in behavior and physiology are programmed by a hierarchical group of biological clocks widely distributed in tissues and synchronized by the environmental day/night cycle. The retina is a remarkable model of circadian clock because it gathers photoreception, self-sustained oscillator function and physiological outputs within the same tissue. This clock plays a crucial function in adapting retinal physiology and visual function to the day/night changes and by regulating processes that are directly linked to retinal survival and phototoxicity.
View Article and Find Full Text PDF