Cell survival in response to stress is determined by the coordination of various signaling pathways. The kinase p38α is activated by many stresses, but the intensity and duration of the signal depends on the stimuli. How different p38α-activation dynamics may impact cell life/death decisions is unclear.
View Article and Find Full Text PDFThis Account highlights recent advances and discusses major challenges in investigations of cryptic (hidden) binding sites by molecular simulations. Cryptic binding sites are not visible in protein targets crystallized without a ligand and only become visible crystallographically upon binding events. These sites have been shown to be druggable and might provide a rare opportunity to target difficult proteins.
View Article and Find Full Text PDFNon-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFWhether recent updates and new releases of atomistic force fields can model the structural and dynamical properties of proteins containing both folded and partially disordered domains is still unclear. To address this fundamental question, we tested eight recently released force fields against our set of nuclear magnetic resonance (NMR) observables for a complex and medically relevant system, the major factor VIII binding region on the von Willebrand factor. This biomedically important region comprises both a folded and a partially structured domain.
View Article and Find Full Text PDFOur current understanding of epidermal growth factor receptor (EGFR) autoinhibition is based on X-ray structural data of monomer and dimer receptor fragments and does not explain how mutations achieve ligand-independent phosphorylation. Using a repertoire of imaging technologies and simulations we reveal an extracellular head-to-head interaction through which ligand-free receptor polymer chains of various lengths assemble. The architecture of the head-to-head interaction prevents kinase-mediated dimerisation.
View Article and Find Full Text PDFp38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity.
View Article and Find Full Text PDFProtein crystallization is frequently induced by the addition of various precipitants, which directly affect protein solubility. In addition to organic cosolvents and long-chain polymers, salts belong to the most widely used precipitants in protein crystallography. However, despite such widespread usage, their mode of action at the atomistic level is still largely unknown.
View Article and Find Full Text PDFBiomolecular X-ray structures typically provide a static, time- and ensemble-averaged view of molecular ensembles in crystals. In the absence of rigid-body motions and lattice defects, B-factors are thought to accurately reflect the structural heterogeneity of such ensembles. In order to study the effects of averaging on B-factors, we employ molecular dynamics simulations to controllably manipulate microscopic heterogeneity of a crystal containing 216 copies of villin headpiece.
View Article and Find Full Text PDFWe study the contribution of linear, pairwise atom-positional correlations (covariances) to absolute and relative conformational entropy as calculated by quasi-harmonic analysis of molecular dynamics (MD) trajectories (SQH and ΔSQH). By analyzing a total of 25 μs of MD simulations of ubiquitin and six of its binding partners in bound and unbound states, and 2.4 μs of simulations of eight different proteins in phosphorylated and unphosphorylated states, we show that ΔSQH represents a remarkably constant fraction of a quasi-harmonic entropy change obtained if one ignores the contribution of covariance terms and uses mass-weighted atom-positional variances only (ΔSVAR).
View Article and Find Full Text PDFAtomic positions obtained by X-ray crystallography are time and space averages over many molecules in the crystal. Importantly, interatomic distances, calculated between such average positions and frequently used in structural and mechanistic analyses, can be substantially different from the more appropriate time-average and ensemble-average interatomic distances. Using crystallographic B-factors, one can deduce corrections, which have so far been applied exclusively to small molecules, to obtain correct average distances as a function of the type of atomic motion.
View Article and Find Full Text PDFRoot mean-square deviation (RMSD) after roto-translational least-squares fitting is a measure of global structural similarity of macromolecules used commonly. On the other hand, experimental x-ray B-factors are used frequently to study local structural heterogeneity and dynamics in macromolecules by providing direct information about root mean-square fluctuations (RMSF) that can also be calculated from molecular dynamics simulations. We provide a mathematical derivation showing that, given a set of conservative assumptions, a root mean-square ensemble-average of an all-against-all distribution of pairwise RMSD for a single molecular species,