Water deficit negatively impacts crop productivity and quality. Plants face these challenges by adjusting biological processes and molecular functions according to the intensity and duration of the stress. The cultivated potato (Solanum tuberosum) is considered sensitive to water deficit, thus breeding efforts are needed to enhance its resilience.
View Article and Find Full Text PDFPurpose: Extracellular vesicles (EVs) are promising tools for nanomedicine and nanobiotechnology. The purification of mammalian-derived EVs involves intensive processes, and their therapeutic application raises multiple safety and regulatory issues. Plants have the potential to serve as nonconventional sources of therapeutically relevant EVs.
View Article and Find Full Text PDFPlant extracellular vesicles (EVs) concentrate and deliver different types of bioactive molecules in human cells and are excellent candidates for a next-generation drug delivery system. However, the lack of standard protocols for plant EV production and the natural variations of their biomolecular cargo pose serious limitation to their use as therapeutics. To overcome these issues, we set up a versatile and standardized procedure to purify plant EVs from hairy root (HR) cultures, a versatile biotechnological system, already successfully employed as source of bioactive molecules with pharmaceutical and nutraceutical relevance.
View Article and Find Full Text PDFPlants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest.
View Article and Find Full Text PDFFruit juice is one of the most easily accessible resources for the isolation of plant-derived vesicles. Here we found that micro- and nano-sized vesicles (MVs and NVs) from four species, , , and , specifically inhibit the proliferation of lung, skin and breast cancer cells, with no substantial effect on the growth of non-cancer cells. Cellular and molecular analyses demonstrate that grapefruit-derived vesicles cause cell cycle arrest at G2/M checkpoint associated with a reduced cyclins B1 and B2 expression levels and the upregulation of cell cycle inhibitor p21.
View Article and Find Full Text PDFExtracellular Vesicles (EVs) play pivotal roles in cell-to-cell and inter-kingdom communication. Despite their relevant biological implications, the existence and role of plant EVs released into the environment has been unexplored. Herein, we purified round-shaped small vesicles (EVs) by differential ultracentrifugation of a sampling solution containing root exudates of hydroponically grown tomato plants.
View Article and Find Full Text PDFAbietane diterpenoids (ADs), synthesized in the roots of different species, such as aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol, have a variety of known biological activities. We have shown that aethiopinone has promising cytotoxic activity against several human tumor cell lines, including the breast adenocarcinoma MCF7, HeLa, epithelial carcinoma, prostate adenocarcinoma PC3, and human melanoma A375. The low content of these compounds in natural sources, and the limited possibility to synthesize them chemically at low cost, prompted us to optimize the production of abietane diterpenoids by targeting genes of the methylerythritol phosphate (MEP) pathway, from which they are derived.
View Article and Find Full Text PDFThis mini-review aims at gaining knowledge on basic aspects of plant nanotechnology. While in recent years the enormous progress of nanotechnology in biomedical sciences has revolutionized therapeutic and diagnostic approaches, the comprehension of nanoparticle-plant interactions, including uptake, mobilization and accumulation, is still in its infancy. Deeper studies are needed to establish the impact of nanomaterials (NMs) on plant growth and agro-ecosystems and to develop smart nanotechnology applications in crop improvement.
View Article and Find Full Text PDFAbietane diterpenoids, containing a quinone moiety, are synthesized in the roots of several species. Promising cytotoxicity and antiproliferative activities have been reported for these compounds in various cell and animal models. We have recently shown that aethiopinone, an o-naphto-quinone diterpene, produced in the roots of different species, is selectively cytotoxic against the A375 melanoma cell line.
View Article and Find Full Text PDFPlant abietane diterpenoids (e.g. aethiopinone, 1- oxoaethiopinone, salvipisone and ferruginol), synthesized in the roots of several Salvia spp, have antibacterial, antifungal, sedative and anti-proliferative properties.
View Article and Find Full Text PDFWater-limiting conditions affect dramatically plant growth and development and, ultimately, yield of potato plants (Solanum tuberosum L.). Therefore, understanding the mechanisms underlying the response to water deficit is of paramount interest to obtain drought tolerant potato varieties.
View Article and Find Full Text PDFThe identification of inhibitors of Hsp90 is currently a primary goal in the development of more effective drugs for the treatment of various types of multidrug resistant malignancies. In an attempt to identify new small molecules modulating the activity of Hsp90, we screened a small library of tetranortriterpenes. A high-affinity interaction with Hsp90 inducible form was uncovered for eight of these compounds, five of which are described here for the first time.
View Article and Find Full Text PDFSalt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress.
View Article and Find Full Text PDFHsp90 C-terminal ligands are potential new anti-cancer drugs alternative to the more studied N-terminal inhibitors. Here we report the identification of a new dihydropyrimidinone binding the C-terminus, which is not structurally related to other well-known natural and nature-inspired inhibitors of this second druggable Hsp90 site.
View Article and Find Full Text PDF