Essential to the design of genetic bioreactors used in the human body is a consideration of how the properties of biomaterials can combine to envelope, spatially guide, reprogramme by gene transfer, and then release cells. In order to approach this goal, poly(ethylene glycol) (PEG) matrices with modulated structural features and defined spatial patterns of bioactive signals have been designed and produced. In particular, within such PEG matrices, both an adhesive RGD peptide gradient, to directionally attract NIH3T3 cells, and a designed spatial distribution of immobilized poly(ethylenimine) (PEI)/DNA complexes, to obtain a localized transfection, have been realized.
View Article and Find Full Text PDFThe study of the interaction of ghrelin (1), the endogenous ligand for the GH secretagogues receptor (GHS-R1a), and des-acyl ghrelin (2) with the GHS-R1a by NMR using living cells is presented, using GHS-R1a stably transfected cell lines (CHO and HEK 293) and wild type cells. Therefore, the interaction of 1 and 2 with the GHS-R1a receptor has been performed using quasi-physiological conditions. Ghrelin (1), showed a higher number of residues affected by chemical shift perturbation (CSP) or chemical shift exchange (CSE) effects: Ser3, Phe4, Leu5, Val12, Gln13/Gln14, Lys16/Lys19, Glu17 and Lys24 were much more affected in 1 than in des-acyl ghrelin (2).
View Article and Find Full Text PDFRealization of systems able to both recruit cells and influence their fate (affecting their processes) represents a new approach for tissue regeneration. We investigated the potency of gene activated matrix (GAM) and implemented the GAM strategy in order to achieve a control of gene expression, as well as a specific cell recruitment. To this aim we developed a 3D DNA bio-activated collagen matrix by Poly (ethylenimine) (PEI)/DNA complex immobilization in the matrix through biotin/avidin bond.
View Article and Find Full Text PDFThe molecular complex containing BCL10 and CARMA [CARD (caspase recruitment domain)-containing MAGUK (membrane-associated guanylate kinase)] proteins has recently been identified as a key component in the signal transduction pathways that regulate activation of the transcription factor NF-kappaB (nuclear factor kappaB) in lymphoid and non-lymphoid cells. Assembly of complexes containing BCL10 and CARMA proteins relies on homophilic interactions established between the CARDs of these proteins. In order to identify BCL10-inhibitory peptides, we have established a method of assaying peptides derived from the CARD of BCL10 in binding competition assays of CARD-CARD self-association.
View Article and Find Full Text PDFSecondary structure motifs and small protein domains can act as building blocks that are isolated and investigated to gain insights into protein global structure but can also modulate interactions with external partners. Most progress has been made in this field using synthetic peptides. Fragmentation of folded proteins by proteolytic enzymes that act preferentially on exposed and less structured sites can help to isolate shorter polypeptides with preserved secondary and tertiary structures that mimic the original protein architecture.
View Article and Find Full Text PDFA library of cyclic CCK8 analogues, containing unnatural amino acids in the peptide sequence, is prepared using solid-phase synthesis. The structure of these cyclic peptides is based on a previously synthesised compound, cyclo-CCK8, selective for CCK(1) receptor. Structure-activity investigations are performed by evaluating the binding properties of the new analogues.
View Article and Find Full Text PDFThe saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements.
View Article and Find Full Text PDFWe report here the synthesis and the conformation analysis by 1H NMR spectroscopy and computer simulations of six potent sweet molecules, N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-S-tert-butyl-L-cysteine 1-methylester (1; 70 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-beta-cyclohexyl-L-alanine 1-methylester (2; 50 000 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-4-cyan-L-phenylalanine 1-methylester (3; 2 000 times more potent than sucrose), N-[3,3-dimethylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (4; 5500 times more potent than sucrose), N-[3-(3-hydroxy-4-methoxyphenyl)propyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (5; 15 000 times more potent than sucrose), and N-[3-(3-hydroxy-4-methoxyphenyl)-3-methylbutyl]-alpha-L-aspartyl-(1R,2S,4S)-1-methyl-2-hydroxy-4-phenylhexylamide (6; 15 000 times more potent than sucrose). The "L-shaped" structure, which we believe to be responsible for sweet taste, is accessible to all six molecules in solution. This structure is characterized by a zwitterionic ring formed by the AH- and B-containing moieties located along the +y axis and by the hydrophobic group X pointing into the +x axis.
View Article and Find Full Text PDFInhibition of growth hormone (GH) and prolactin (PRL) release from the anterior pituitary gland is mediated through somatostatin receptor subtypes sst2 and sst5. It has been found that somatostatin (SS) analogues that are selective for both receptor subtypes are more effective at inhibiting GH and PRL release than monospecific analogues alone. We synthesized several disulfide-bridged octapeptide SS analogues.
View Article and Find Full Text PDFBy screening a synthetic peptide library of general formula (NH(2)-Cys1-X2-X3-X4)(2)-Lys-Gly-OH, a disulfide-bridged cyclic peptide, where X2-X3-X4 is the tripeptide Phe-His-His, has been selected as a ligand for immunoglobulin G (IgG). The peptide, after a preliminary chromatographic characterization, has proved useful as a new affinity ligand for the purification of polyclonal as well as monoclonal antibodies from biological fluids, with recovery yields of up to 90% (90% purity). The ligand is able to bind antibody fragments containing both Fab and Fc from different antibody isotypes, a fact suggesting the presence of at least two different antibody-binding sites.
View Article and Find Full Text PDFWe have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2.
View Article and Find Full Text PDFPreviously reported results suggest that the analogue of the somatostatin des-AA1,2,5[D-Trp8,IAmp9]-somatostatin (CH-275) peptide bearing chelating agents able to coordinate radioactive metals could be used for scintigraphic imaging of tumor lesions overexpressing sstr1. An efficient synthetic procedure for the preparation of the somatostatin analogue CH-275 and its conjugate DTPAGlu-Gly-CH-275, bearing the chelating agent DTPAGlu (DTPAGlu=N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid) on the N-terminus, by solid-phase peptide synthesis and 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, is here reported. Rapid and efficient labeling of DTPAGlu-Gly-CH-275 was achieved by addition of 111In(III) to the compound.
View Article and Find Full Text PDFThe conformational features of a peptide derived by the 10-30 sequence of the mitochondrial domain of AKAP121 [Ac-1XKKPLALPGMLALLGWWWFFSRKKX25-NH2 (X=beta-Ala)] in water and in a water/trifluoroethanol (TFE) mixture at 298 K have been determined by NMR and CD spectroscopy. Backbone clustering analysis of NMR-derived structures led to the identification of a single representative structure in water/TFE. The structure of the peptide consists mainly of an alpha-helix, whose core is the region 7-23, with a less ordered N-terminal part.
View Article and Find Full Text PDFThe astins, a family of natural antitumor cyclopeptides, from the roots of Aster tataricus, consist of a 16-membered ring system containing uncoded amino acid residues. The backbone conformation, with a cis-3,4-dichlorinated proline residue, plays an important role in antineoplastic activity. The acyclic astins, on the other hand, do not show antitumor activity, suggesting that the cyclic nature of astins may be a key role in their biological properties.
View Article and Find Full Text PDFA new scaffold, TREN-(suc-OH)(3) where TREN is tris(2-aminoethyl)amine and suc is the succinic acid spacers, was incorporated to assemble triple helices composed of Gly-Nleu-Pro sequences (Nleu denotes N-isobutylglycine). Extensive biophysical studies which include denaturation studies, CD and NMR spectroscopy, and molecular modeling demonstrated that TREN-[suc-(Gly-Nleu-Pro)(n)-NH(2)](3) (n = 5 and 6) form stable triple helical structures in solution. A comparative analysis of TREN-assembled and KTA-assembled collagen mimetics (KTA denotes Kemp triacid, 1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid) indicates that the flexibility of the TREN scaffold is superior to the KTA scaffold in inducing triple helicity.
View Article and Find Full Text PDF