The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation.
View Article and Find Full Text PDFMost Gram-negative phytopathogenic bacteria inject type III effector (T3E) proteins into plant cells to manipulate signaling pathways to the pathogen's benefit. In resistant plants, specialized immune receptors recognize single T3Es or their biochemical activities, thus halting pathogen ingress. However, molecular function and mode of recognition for most T3Es remains elusive.
View Article and Find Full Text PDFThe pathogenesis of cardiovascular diseases is a multifunctional process in which the mineralocorticoid receptor (MR), a ligand-dependent transcription factor, is involved as proven by numerous clinical studies. The development of pathophysiological MR actions depends on the existence of additional factors e.g.
View Article and Find Full Text PDFReversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates.
View Article and Find Full Text PDFMemory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation.
View Article and Find Full Text PDFAlternative splicing of nuclear pre-mRNA is essential for generating protein diversity and regulating gene expression. While many immunologically relevant genes undergo alternative splicing, the role of regulated splicing in T cell immune responses is largely unexplored, and the signaling pathways and splicing factors that regulate alternative splicing in T cells are poorly defined. Here, we show using a combination of Jurkat T cells, human primary T cells, and ex vivo naïve and effector virus-specific T cells isolated after influenza A virus infection that SC35 phosphorylation is induced in response to stimulatory signals.
View Article and Find Full Text PDFMyt1 kinase is a member of the Wee-kinase family involved in G2/M checkpoint regulation of the cell cycle. So far, no peptide substrate suitable for activity-based screening has been reported, hampering systematic development of Myt1 kinase inhibitors. Myt1 inhibitors had to be identified by using either binding assays or activity assays with expensive proteinous substrates.
View Article and Find Full Text PDFRecently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca(2+)-loaded calmodulin (Ca(2+)/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca(2+)/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly.
View Article and Find Full Text PDFAs membrane proteins play an important role in a variety of life-threatening diseases, the development of therapeutic monoclonal antibodies against membrane proteins is of significant interest. Among many other requirements, the process of antibody drug development requires a set of tailor-made assays for the characterization of the antibodies and for monitoring their activity. Designing assays to characterize antibodies directed to membrane proteins is challenging, because the natural targets are often not available in a format that is compatible with a biochemical assay setup.
View Article and Find Full Text PDFCirculating antibodies are highly selective binding reagents directed to a vast repertoire of antigens. Candidate antigens displayed as overlapping peptides on microarrays can be used to screen for recognition by serum antibodies from clinically well-defined patient populations. The methodology is robust and enables unbiased visualization of antigen-specific B-cell responses.
View Article and Find Full Text PDFThe reversible phosphorylation of serine, threonine, and tyrosine residues is one of the most important intracellular post-translational modifications regulating enzymatic activities and protein/protein interaction in eukaryotic cells. Tools for determining phosphorylation status of proteins and peptides play a prominent role in signal transduction research and proteomics. Pan-specific antibodies claimed to recognize modified amino acid residues independent on the nature of surrounding residues in peptides and proteins are widely used.
View Article and Find Full Text PDF