Publications by authors named "Antonia Kalushkova"

Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer.

View Article and Find Full Text PDF

Multiple myeloma is a heterogeneous hematological disease that originates from the bone marrow and is characterized by the monoclonal expansion of malignant plasma cells. Despite novel therapies, multiple myeloma remains clinically challenging. A common feature among patients with poor prognosis is the increased activity of the epigenetic silencer EZH2, which is the catalytic subunit of the PRC2.

View Article and Find Full Text PDF

Unlabelled: Relapse is the leading cause of death in patients with medulloblastoma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification.

View Article and Find Full Text PDF

Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a heterogeneous haematological disease that remains clinically challenging. Increased activity of the epigenetic silencer EZH2 is a common feature in patients with poor prognosis. Previous findings have demonstrated that metabolic profiles can be sensitive markers for response to treatment in cancer.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a tumor of plasmablasts/plasma cells (PCs) characterized by the expansion of malignant PCs with complex genetic aberrations in the bone marrow (BM). Recent reports, by us and others, have highlighted the polycomb group (PcG) proteins as potential targets for therapy in MM. The PcG protein BMI-1 of the polycomb repressive complex 1 (PRC1) has been reported to be overexpressed and to possess oncogenic functions in MM.

View Article and Find Full Text PDF

Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite the fact that current treatment strategies have improved patients' median survival time, MM remains incurable. Epigenetic aberrations are emerging as important players in tumorigenesis making them attractive targets for therapy in cancer including MM.

View Article and Find Full Text PDF

Chromatin-remodeling factors are required for a wide range of cellular and biological processes including development and cognition, mainly by regulating gene expression. As these functions would predict, deregulation of chromatin-remodeling factors causes various disease syndromes, including neurodevelopmental disorders. Recent reports have linked mutations in several genes coding for chromatin-remodeling factors to intellectual disability (ID).

View Article and Find Full Text PDF

Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells.

View Article and Find Full Text PDF

NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells.

View Article and Find Full Text PDF

AKN-028 is a novel tyrosine kinase inhibitor with preclinical activity in acute myeloid leukemia (AML), presently undergoing investigation in a phase I/II study. It is a potent inhibitor of the FMS-like kinase 3 (FLT3) but shows in vitro activity in a wide range of AML samples. In the present study, we have characterized the effects of AKN-028 on AML cells in more detail.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells.

View Article and Find Full Text PDF

The SMARCA3 gene was recently found to be a common target for methylation in colon and gastric cancer, suggesting it has possible tumor suppressor activity. To determine whether SMARCA3 plays a role in colorectal and/or gastric cancer predisposition, a mutation screening of the gene was performed in affected index cases from 20 Swedish families with colorectal and/or gastric cancer. Notably, one family included in the screening exhibited suggestive linkage to the region on chromosome 3q that harbors the SMARCA3 gene.

View Article and Find Full Text PDF