Publications by authors named "Antonia Henne"

Innate immune responses are linked to key metabolic pathways, yet the proximal signaling events that connect these systems remain poorly understood. Here we show that phosphofructokinase 1, liver type (PFKL), a rate-limiting enzyme of glycolysis, is phosphorylated at Ser775 in macrophages following several innate stimuli. This phosphorylation increases the catalytic activity of PFKL, as shown by biochemical assays and glycolysis monitoring in cells expressing phosphorylation-defective PFKL variants.

View Article and Find Full Text PDF

The 2'3'-cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of IFN genes (STING) pathway can sense infection and cellular stress by detecting cytosolic DNA. Upon ligand binding, cGAS produces the cyclic dinucleotide messenger cGAMP, which triggers its receptor STING. Active STING initiates gene transcription through the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB and induces autophagy, but whether STING can cause changes in the metabolism of macrophages is unknown.

View Article and Find Full Text PDF

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function.

View Article and Find Full Text PDF

A reliable method for metabolite extraction is central to mass spectrometry-based metabolomics. However, existing methods are lengthy, mostly due to the step of scraping cells from cell culture vessels, which restricts metabolomics in broader application such as lower cell numbers and high-throughput studies. Here, we present a simplified metabolite extraction (SiMeEx) method, to efficiently and quickly extract metabolites from adherent mammalian cells.

View Article and Find Full Text PDF
Article Synopsis
  • Macrophages undergo significant metabolic changes during their M1-like pro-inflammatory polarization, particularly involving the production of itaconate, which plays roles in both facilitating and responding to inflammation.
  • Itaconate is produced in macrophages through a specific mitochondrial process involving the enzyme aconitase decarboxylase 1 (ACOD1) and utilizes carbon sources from the TCA cycle.
  • The study highlights that the balance between oxidative and reductive TCA cycle metabolism is crucial for itaconate synthesis, noting differences between mouse and human macrophages in how they respond to hypoxic conditions regarding itaconate production.
View Article and Find Full Text PDF

Since its discovery in inflammatory macrophages, itaconate has attracted much attention due to its antimicrobial and immunomodulatory activity. However, instead of investigating itaconate itself, most studies used derivatized forms of itaconate and thus the role of non-derivatized itaconate needs to be scrutinized. Mesaconate, a metabolite structurally very close to itaconate, has never been implicated in mammalian cells.

View Article and Find Full Text PDF

For electrons to continuously enter and flow through the mitochondrial electron transport chain (ETC), they must ultimately land on a terminal electron acceptor (TEA), which is known to be oxygen in mammals. Paradoxically, we find that complex I and dihydroorotate dehydrogenase (DHODH) can still deposit electrons into the ETC when oxygen reduction is impeded. Cells lacking oxygen reduction accumulate ubiquinol, driving the succinate dehydrogenase (SDH) complex in reverse to enable electron deposition onto fumarate.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) shows robust protective effects on β-cell survival and function and GLP-1 based therapies are successfully applied for type-2 diabetes (T2D) and obesity. Another cleavage product of pro-glucagon, Glucagon-like peptide-2 (GLP-2; both GLP-1 and GLP-2 are inactivated by DPP-4) has received little attention in its action inside pancreatic islets. In this study, we investigated GLP-2 production, GLP-2 receptor (GLP-2R) expression and the effect of GLP-2R activation in human islets.

View Article and Find Full Text PDF