Publications by authors named "Antonia Eckert"

Wnt signaling plays important roles in development, homeostasis, and tumorigenesis. Mutations in β-catenin that activate Wnt signaling have been found in colorectal and hepatocellular carcinomas. However, the dynamics of wild-type and mutant forms of β-catenin are not fully understood.

View Article and Find Full Text PDF

Development and homeostasis of multicellular organisms is largely controlled by complex cell-cell signaling networks that rely on specific binding of secreted ligands to cell surface receptors. The Wnt signaling network, as an example, involves multiple ligands and receptors to elicit specific cellular responses. To understand the mechanisms of such a network, ligand-receptor interactions should be characterized quantitatively, ideally in live cells or tissues.

View Article and Find Full Text PDF

The activation of distinct branches of the Wnt signaling network is essential for regulating early vertebrate development. Activation of the canonical Wnt/β-catenin pathway stimulates expression of β-catenin-Lef/Tcf regulated Wnt target genes and a regulatory network giving rise to the formation of the Spemann organizer. Non-canonical pathways, by contrast, mainly regulate cell polarization and migration, in particular convergent extension movements of the trunk mesoderm during gastrulation.

View Article and Find Full Text PDF

Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live cells expressing the photoconvertible protein mEosFP fused to the chitin synthase ChsB.

View Article and Find Full Text PDF

Here we present mGarnet2, a monomeric, far-red fluorescent marker protein derived from mRuby, with absorption and emission bands peaking at 598 and 671 nm, respectively. The protein shows excellent performance as a live-cell fusion marker for STED nanoscopy with 640 nm excitation and 780 nm depletion wavelengths.

View Article and Find Full Text PDF