Front Microbiol
September 2021
Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology.
View Article and Find Full Text PDFThe cell membrane of (hyper)thermophilic archaea, including the thermoacidophile Sulfolobus acidocaldarius, incorporates dibiphytanylglycerol tetraether lipids. The hydrophobic cores of such tetraether lipids can include up to eight cyclopentane rings. Presently, nothing is known of the biosynthesis of these rings.
View Article and Find Full Text PDFN-glycosylation is a post-translational modification that occurs across evolution. In the thermoacidophilic archaea Sulfolobus acidocaldarius, glycoproteins are modified by an N-linked tribranched hexasaccharide reminiscent of the N-glycans assembled in Eukarya. Previously, hexose-bearing dolichol phosphate was detected in a S.
View Article and Find Full Text PDFThe primary quorum sensing system in the opportunistic pathogen Pseudomonas aeruginosa is regulated through the synthesis and secretion of N-3-oxo-dodecanoyl-L-homoserine lactone (C12) which binds the transcriptional activator LasR. In this study we report the design, synthesis and biological evaluation of new analogs of C12. Analysis of the autoinducer binding site cavity of LasR revealed a positively charged cavity near the center of bound C12.
View Article and Find Full Text PDFThe synthesis and comparison of activities of 'tag-free' probes with diazirines at various positions are described. Remarkable differences in their effects on P. aeruginosa and on human bronchial epithelial cells were observed, supporting the efforts to isolate and identify receptors for N-acyl homoserine lactones.
View Article and Find Full Text PDFAnnu Rev Entomol
February 2009
Parasites often alter the behavior of their hosts in ways that are ultimately beneficial to the parasite or its offspring. Although the alteration of host behavior by parasites is a widespread phenomenon, the underlying neuronal mechanisms are only beginning to be understood. Here, we focus on recent advances in the study of behavioral manipulation via modulation of the host central nervous system.
View Article and Find Full Text PDFAfter a loss against an opponent, the aggressiveness of a male cricket is significantly reduced for up to 30 minutes. This depression of aggressiveness is an important factor in the establishment and maintenance of dominance between individuals. In the present study, we investigated the functional roles of nitric oxide (NO) signaling in the depression of aggressiveness in subordinate male crickets.
View Article and Find Full Text PDFMale solitary animals frequently enter aggressive interactions with conspecific individuals to protect their territory or to gain access to females. After an agonistic encounter, the loser (subordinate individual) changes its behaviour from aggression to avoidance. We investigated agonistic interactions between pairs of male crickets to understand how dominance is established and maintained.
View Article and Find Full Text PDFZoolog Sci
September 2006
Fighting behavior in male crickets is already well described, and some of the mechanisms underlying aggression and aggressive motivation have already been revealed. Much less is known about female/female interactions. Here, we report that adult female crickets that had been isolated for several days readily entered into agonistic interactions with conspecific individuals.
View Article and Find Full Text PDFSoluble guanylyl cyclase (SGC) is the main receptor for the gaseous signalling molecule nitric oxide (NO) in vertebrates and invertebrates. Recently, a novel class of drugs that regulate mammalian SGC by NO-independent allosteric mechanisms has been identified [e.g.
View Article and Find Full Text PDF