Publications by authors named "Antonia Claasz"

Relaxin is an insulin-like peptide consisting of two separate chains (A and B) joined by two inter- and one intrachain disulfide bonds. Binding to its receptor requires an Arg-X-X-X-Arg-X-X-Ile motif in the B-chain. A related member of the insulin superfamily, INSL3, has a tertiary structure that is predicted to be similar to relaxin.

View Article and Find Full Text PDF

Relaxin is a peptide with various reproductive and nonreproductive functions. The site for the peptide-receptor interaction contains two arginines (Arg) and an isoleucine (Ile) or valine (Val) residue in the B-chain with a configuration of -Arg-X-X-X-Arg-X-X-Ile/Val-X-. The sheep insulin-like peptide 3 (INSL3), a structural homologue of relaxin, also contains the n, n+4 arginines in the B-chain but they are displaced towards the carboxyl terminus by four residues (-X-X-X-X-Arg-X-X-Val-Arg-).

View Article and Find Full Text PDF

The objective of this study was to isolate and purify prorelaxin or mature relaxin from the tammar wallaby corpus luteum (CL), determine their structure and bioactivity, and test the hypothesis that enzymatic cleavage of prorelaxin occurs in late gestation. Tammar relaxin peptides were extracted from pooled corpora lutea of late pregnant tammars using a combination of HPLC methods, and they were identified using Western blotting with a human (H2) relaxin antisera and matrix-assisted laser desorption ionization time of flight mass spectrometry. Although no prorelaxin was identified, multiple 6-kDa peptides were detected, which corresponded to the predicted mature tammar relaxin amino acid sequence, with an A chain of 24 amino acids, and different B chain lengths of 28, 29, 30, and 32 amino acids.

View Article and Find Full Text PDF

We have identified a novel human relaxin gene, designated H3 relaxin, and an equivalent relaxin gene in the mouse from the Celera Genomics data base. Both genes encode a putative prohormone sequence incorporating the classic two-chain, three cysteine-bonded structure of the relaxin/insulin family and, importantly, contain the RXXXRXX(I/V) motif in the B-chain that is essential for relaxin receptor binding. A peptide derived from the likely proteolytic processing of the H3 relaxin prohormone sequence was synthesized and found to possess relaxin activity in bioassays utilizing the human monocytic cell line, THP-1, that expresses the relaxin receptor.

View Article and Find Full Text PDF