The multichaperone heat shock protein (Hsp) 90 complex mediates the maturation and stability of a variety of oncogenic signaling proteins. For this reason, Hsp90 has emerged as a promising target for anticancer drug development. Herein, we describe a complete computational procedure for building several 3-D QSAR models used as a ligand-based (LB) component of a comprehensive ligand-based (LB) and structure-based (SB) virtual screening (VS) protocol to identify novel molecular scaffolds of Hsp90 inhibitors.
View Article and Find Full Text PDFHsp90 continues to be an important target for pharmaceutical discovery. In this project, virtual screening (VS) for novel Hsp90 inhibitors was performed using a combination of Autodock and Surflex-Sim (LB) scoring functions with the predictive ability of 3-D QSAR models, previously generated with the 3-D QSAutogrid/R procedure. Extensive validation of both structure-based (SB) and ligand-based (LB), through realignments and cross-alignments, allowed the definition of LB and SB alignment rules.
View Article and Find Full Text PDFHere we report the design, synthesis, and 5-HT(7) receptor affinity of a set of 1-(3-biphenyl)- and 1-(2-biphenyl)piperazines. The effect on 5-HT(7) affinity of various substituents on the second (distal) phenyl ring was analyzed. Several compounds showed 5-HT(7) affinities in the nanomolar range and >100-fold selectivity over 5-HT(1A) and adrenergic α(1) receptors.
View Article and Find Full Text PDFSchistosoma mansoni and Plasmodium falciparum are pathogen parasites that spend part of their lives in the blood stream of the human host and are therefore heavily exposed to fluxes of toxic reactive oxygen species (ROS). SmTGR, an essential enzyme of the S. mansoni ROS detoxification machinery, is known to be inhibited by Auranofin although the inhibition mechanism has not been completely clarified.
View Article and Find Full Text PDFPlasmodium falciparum and Schistosoma mansonii are the parasites responsible for most of the malaria and schistosomiasis cases in the world. Notwithstanding their many differences, the two agents have striking similarities in that they both are blood feeders and are targets of an overlapping set of drugs, including the well-known artemether molecule. Here we explore the possibility of using the known information about the mode of action of artemether in Plasmodium to identify the molecular target of the drug in Schistosoma and provide evidence that artemether binds to SmSERCA, a putative Ca²⁺-ATPase of Schistosoma .
View Article and Find Full Text PDFThe viral NS5B RNA-dependent RNA-polymerase (RdRp) is one of the best-studied and promising targets for the development of novel therapeutics against hepatitis C virus (HCV). Allosteric inhibition of this enzyme has emerged as a viable strategy toward blocking replication of viral RNA in cell based systems. Herein, we describe how the combination of a complete computational procedure together with biological studies led to the identification of novel molecular scaffolds, hitherto untested toward NS5B polymerase.
View Article and Find Full Text PDFHepatitis C is becoming an increasingly common cause of mortality especially in the HIV-coinfected group. Due to the efficacy of interferon (IFN) based therapy in the treatment of hepatitis C, various compounds possessing IFN-inducing activity have been hitherto reported. In the present study, we describe how steric, electrostatic, hydrophobic, and hydrogen-bonding interactions might influence the biological activity of a published set of IFN inducers, using a three-dimensional quantitative structure-activity relationship (3-D QSAR) approach.
View Article and Find Full Text PDFSeveral derivatives out of a series of antifungal agents exhibited a good inhibitory potency against aromatase as well as a fairly good selectivity toward CYP17, even if lacking H-bond accepting substituents. Their common structural feature is a flexible backbone that did not fit into previously reported CYP19 models. Thus, a ligand-based approach was exploited to develop a novel statistically robust, self-consistent and predictive 3D-QSAR model herein proposed as a helpful tool to design new aromatase inhibitors.
View Article and Find Full Text PDF