Publications by authors named "Antoni Tortajada"

Broad-acting antiviral strategies to prevent respiratory tract infections are urgently required. Emerging or re-emerging viral diseases caused by new or genetic variants of viruses such as influenza viruses (IFVs), respiratory syncytial viruses (RSVs), human rhinoviruses (HRVs), parainfluenza viruses (PIVs) or coronaviruses (CoVs), pose a severe threat to human health, particularly in the very young or old, or in those with pre-existing respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD). Although vaccines remain a key component in controlling and preventing viral infections, they are unable to provide broad-spectrum protection against recurring seasonal infections or newly emerging threats.

View Article and Find Full Text PDF

The outer membrane of Gram-negative bacteria presents an efficient barrier to the permeation of antimicrobial molecules. One strategy pursued to circumvent this obstacle is to hijack transport systems for essential nutrients, such as iron. BAL30072 and MC-1 are two monobactams conjugated to a dihydroxypyridone siderophore that are active against and Here, we investigated the mechanism of action of these molecules in We identified two novel TonB-dependent receptors, termed -PiuA and -PirA, that are required for the antimicrobial activity of both agents.

View Article and Find Full Text PDF

The mitogen-activation protein kinase ERK2 is tightly regulated by multiple phosphatases, including those of the kinase interaction motif (KIM) PTP family (STEP, PTPSL and HePTP). Here, we use small angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC) to show that the ERK2:STEP complex is compact and that residues outside the canonical KIM motif of STEP contribute to ERK2 binding. Furthermore, we analyzed the interaction of PTPSL with ERK2 showing that residues outside of the canonical KIM motif also contribute to ERK2 binding.

View Article and Find Full Text PDF

The MAP kinase p38α is essential for neuronal signaling. To better understand the molecular regulation of p38α we used atomistic and molecular techniques to determine the structural basis of p38α regulation by the two neuronal tyrosine phosphatases, PTPSL/PTPBR7 (PTPRR) and STEP (PTPN5). We show that, despite the fact that PTPSL and STEP belong to the same family of regulatory proteins, they interact with p38α differently and their distinct molecular interactions explain their different catalytic activities.

View Article and Find Full Text PDF

The MAP kinase ERK2 (ERK2, extracellular signal-regulated kinase 2) is regulated by numerous phosphatases that tightly control its activity. For example, the hematopoietic tyrosine phosphatase (HePTP) negatively regulates T cell activation in lymphocytes via ERK2 dephosphorylation. However, only very limited structural information is available for these biologically important complexes.

View Article and Find Full Text PDF

Hematopoietic tyrosine phosphatase (HePTP) is one of three members of the kinase interaction motif (KIM) phosphatase family which also includes STEP and PCPTP1. The KIM-PTPs are characterized by a 15 residue sequence, the KIM, which confers specific high-affinity binding to their only known substrates, the MAP kinases Erk and p38, an interaction which is critical for their ability to regulate processes such as T cell differentiation (HePTP) and neuronal signaling (STEP). The KIM-PTPs are also characterized by a unique set of residues in their PTP substrate binding loops, where 4 of the 13 residues are differentially conserved among the KIM-PTPs as compared to more than 30 other class I PTPs.

View Article and Find Full Text PDF

Toward enhancing in vitro membrane protein studies, we have utilized small self-assembling peptides with detergent properties ("peptergents") to extract and stabilize the integral membrane flavoenzyme, glycerol-3-phosphate dehydrogenase (GlpD), and the soluble redox flavoenzyme, NADH peroxidase (Npx). GlpD is a six transmembrane spanning redox enzyme that catalyzes the oxidation of glycerol-3-phosphate to dihydroxyacetone phosphate. Although detergents such as n-octyl-beta-D-glucpyranoside can efficiently solubilize the enzyme, GlpD is inactivated within days once reconstituted into detergent micelles.

View Article and Find Full Text PDF