Mitochondrial prohibitins (PHB) are highly conserved proteins with a peculiar effect on lifespan. While PHB depletion shortens lifespan of wild-type animals, it enhances longevity of a plethora of metabolically compromised mutants, including target of rapamycin complex 2 (TORC2) mutants sgk-1 and rict-1. Here, we show that sgk-1 mutants have impaired mitochondrial homeostasis, lipogenesis and yolk formation, plausibly due to alterations in membrane lipid and sterol homeostasis.
View Article and Find Full Text PDFEthanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions.
View Article and Find Full Text PDFThe adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice.
View Article and Find Full Text PDFAims: The aim of the study was to assess whether intermittent ethanol administration to adolescent rats activates innate immune response and TLRs signalling causing myelin disruption and long-term cognitive and behavioural deficits.
Methods: We used a rat model of intermittent binge-like ethanol exposure during adolescence.
Results: Binge-like ethanol administration to adolescent rats increased the gene expression of TLR4 and TLR2 in the prefrontal cortex (PFC), as well as inflammatory cytokines TNFα and IL-1β.
Using transcriptomic gene expression profiling we found tumor suppressor DRO1 being repressed in AIB1 transgenic mice. In agreement, AIB1 represses DRO1 promoter and its expression levels inversely correlate with DRO1 in several cancer cell lines and in ectopic and silencing assays. Estrogen modulators treatment showed a regulation in an estrogen receptor-dependent fashion.
View Article and Find Full Text PDF