Background: Total sleep deprivation (TSD) transiently reverses depressive symptoms in a majority of patients with depression. How TSD modulates diffusion tensor imaging (DTI) measures of white matter (WM) microstructure, which may be linked with TSD's rapid antidepressant effects, remains uncharacterized.
Methods: Patients with depression ( = 48, mean age = 33, 26 women) completed diffusion-weighted imaging and Hamilton Depression Rating (HDRS) and rumination scales before and after >24 h of TSD.
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique involving administration of well-tolerated electrical current to the brain through scalp electrodes. TDCS may improve symptoms in neuropsychiatric disorders, but mixed results from recent clinical trials underscore the need to demonstrate that tDCS can modulate clinically relevant brain systems over time in patients. Here, we analyzed longitudinal structural MRI data from a randomized, double-blind, parallel-design clinical trial in depression (NCT03556124, N = 59) to investigate whether serial tDCS individually targeted to the left dorso-lateral prefrontal cortex (DLPFC) can induce neurostructural changes.
View Article and Find Full Text PDFBackground: Electroconvulsive therapy (ECT) is effective for treatment-resistant depression and leads to short-term structural brain changes and decreases in the inflammatory response. However, little is known about how brain structure and inflammation relate to the heterogeneity of treatment response in the months following an index ECT course.
Methods: A naturalistic six-month study following an index ECT course included 20 subjects with treatment-resistant depression.
Background: Alterations in the peripheral inflammatory profile and white matter (WM) deterioration are frequent in Major Depressive Disorder (MDD). The present study applies free-water imaging to investigate the relationship between altered peripheral inflammation and WM microstructure and their predictive value in determining response to ketamine treatment in MDD.
Methods: Ten individuals with MDD underwent diffusion-weighted magnetic resonance imaging and a blood-draw before and 24 h after ketamine infusion.
Background: Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) can influence performance on behavioral tasks and improve symptoms of brain conditions. Yet, it remains unclear precisely how tDCS affects brain function and connectivity. Here, we measured changes in functional connectivity (FC) metrics in blood-oxygenation-level-dependent (BOLD) fMRI data acquired during MR-compatible tDCS in a whole-brain analysis with corrections for false discovery rate.
View Article and Find Full Text PDFPatients with major depressive disorder (MDD) exhibit impaired control of cognitive and emotional systems, including deficient response selection and inhibition. Though these deficits are typically attributed to abnormal communication between macro-scale cortical networks, altered communication with the cerebellum also plays an important role. Yet, how the circuitry between the cerebellum and large-scale functional networks impact treatment outcome in MDD is not understood.
View Article and Find Full Text PDF. We present an easy-to-implement technique for accurate electrode placement over repeated transcranial electrical stimulation (tES) sessions across participants and time. tES is an emerging, non-invasive neuromodulation technique that delivers electrical stimulation using scalp electrodes.
View Article and Find Full Text PDFRecent clinical trials of transcranial direct current stimulation (tDCS) in depression have shown contrasting results. Consequently, we used in-vivo neuroimaging to confirm targeting and modulation of depression-relevant neural circuitry by tDCS. Depressed participants (N = 66, Baseline Hamilton Depression Rating Scale (HDRS) 17-item scores ≥14 and <24) were randomized into Active/Sham and High-definition (HD)/Conventional (Conv) tDCS groups using a double-blind, parallel design, and received tDCS individually targeted at the left dorsolateral prefrontal cortex (DLPFC).
View Article and Find Full Text PDFBackground: Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized.
Methods: Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD).
Biol Psychiatry Cogn Neurosci Neuroimaging
July 2021
Background: Ketamine is a highly effective antidepressant for patients with treatment-resistant major depressive disorder (MDD). Resting-state functional magnetic resonance imaging studies show disruptions of functional connectivity (FC) between limbic regions and resting-state networks (RSNs) in MDD, including the default mode network, central executive network (CEN), and salience network (SN). Here, we investigated whether serial ketamine treatments change FC between limbic structures and RSNs.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2021
Background: Subcallosal cingulate (SCC) activity is associated with treatment response in major depressive disorder (MDD). Using electroconvulsive therapy (ECT) as a treatment model in this exploratory study, we addressed whether pretreatment SCC structural connectivity with corticolimbic-striatal circuitry relates to therapeutic outcome and whether these connectivity patterns change with treatment.
Methods: Diffusion magnetic resonance imaging scans were acquired in 43 patients with MDD (mean [SD] age = 41 [13] years; men/women: 18/25) before and within 1 week of completing an ECT index series and in 31 healthy control subjects scanned twice (mean [SD] age = 38 [11] years; men/women: 17/18).
Subanesthetic ketamine is found to induce fast-acting and pronounced antidepressant effects, even in treatment resistant depression (TRD). However, it remains unclear how ketamine modulates neural function at the brain systems-level to regulate emotion and behavior. Here, we examined treatment-related changes in the inhibitory control network after single and repeated ketamine therapy in TRD.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.
View Article and Find Full Text PDFKetamine infusion therapy can produce fast-acting antidepressant effects in patients with major depressive disorder (MDD). Yet, how single and repeated ketamine treatment induces brain systems-level neuroplasticity underlying symptom improvement is unknown. Advanced multiband imaging (MB) pseudo-continuous arterial spin labeling (pCASL) perfusion MRI data was acquired from patients with treatment resistant depression (TRD) (N = 22, mean age=35.
View Article and Find Full Text PDFElectroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (n = 44, 23 female) to determine their relationship, if any, with improvement after ECT.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
March 2019
Background: Electroconvulsive therapy (ECT) is an effective treatment for severe depression and is shown to increase hippocampal volume and modulate hippocampal functional connectivity. Whether variations in hippocampal structural connectivity occur with ECT and relate to clinical response is unknown.
Methods: Patients with major depression (n = 36, 20 women, age 41.
Chronic musculoskeletal pain is a condition that influences central nervous system structure. In this study, we combined novel structural neuroimaging techniques, using well-validated software packages including FSL, Mrtrix3, and DSI Studio, to characterize brain grey (GM) and white matter (WM) differences in chronic musculoskeletal pain participants (n = 74), compared to age-matched pain-free controls (n = 31). In participants with chronic pain, we identified significantly higher volume in subcortical GM structures using voxel-based morphometry (FSLVBM).
View Article and Find Full Text PDFAlcoholism can lead to a complex mixture of cognitive and emotional deficits associated with abnormalities in fronto-cortico-striatal-limbic brain circuitries. Given the broad variety of neurobehavioral symptoms, one would also expect alterations of postrolandic neocortical systems. Thus, we used diffusion tensor imaging (DTI) to study the integrity of the middle longitudinal fascicle (MdLF), a major postrolandic association white matter tract that extends from the superior temporal gyrus to the parietal and occipital lobes, in individuals with a history of chronic alcohol abuse.
View Article and Find Full Text PDF