Living organisms have developed finely regulated homeostatic networks to mitigate the effects of environmental fluctuations in transition metal micronutrients, including iron, zinc, and copper. In Saccharomyces cerevisiae, the tandem zinc-finger protein Cth2 post-transcriptionally regulates gene expression under conditions of iron deficiency by controlling the levels of mRNAs that code for non-essential ferroproteins. The molecular mechanism involves Cth2 binding to AU-rich elements present in the 3' untranslated region of target mRNAs, negatively affecting their stability and translation.
View Article and Find Full Text PDFUnderstanding plant immune responses is complex because of the high interdependence among biological processes in homeostatic networks. Hence, the integration of environmental cues causes network rewiring that interferes with defense responses. Similarly, plants retain molecular signatures configured under abiotic stress periods to rapidly respond to recurrent stress, and these can alter immunity.
View Article and Find Full Text PDFThe sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes.
View Article and Find Full Text PDFCopper (Cu) and iron (Fe) constitute fundamental nutrients for plant biology but are often limited due to low bioavailability. Unlike responses to single Cu or Fe deprivation, the consequences of simultaneous Cu and Fe deficiency have not yet been fully deciphered. Previously, it was demonstrated that Cu and Fe deficiency applied in combination imposes transcriptome, proteome, and metabolome changes different from those triggered under each deficiency individually.
View Article and Find Full Text PDFCopper (Cu) and iron (Fe) are essential for plant growth and are often in short supply under natural conditions. Molecular responses to simultaneous lack of both metals (-Cu-Fe) differ from those seen in the absence of either alone. Metabolome profiling of plant leaves previously revealed that fumarate levels fall under -Cu-Fe conditions.
View Article and Find Full Text PDFPlant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation.
View Article and Find Full Text PDFPlant hormones coordinate responses to environmental cues with developmental programs, and are fundamental for stress resilience and agronomic yield. The core signalling pathways underlying the effects of phytohormones have been elucidated by genetic screens and hypothesis-driven approaches, and extended by interactome studies of select pathways. However, fundamental questions remain about how information from different pathways is integrated.
View Article and Find Full Text PDFBackground: Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes.
Result: We subjected A.
Plant responses to coincident nutrient deficiencies cannot be predicted from the responses to individual deficiencies. Although copper (Cu) and iron (Fe) are essential micronutrients for plant growth that are often and concurrently limited in soils, the combinatorial response to Cu-Fe deficiency remains elusive. In the present study, we characterised the responses of Arabidopsis thaliana plants deprived of Cu, Fe or both (-Cu-Fe) at the level of plant development, mineral composition, and reconfiguration of transcriptomes, proteomes and metabolomes.
View Article and Find Full Text PDFFaster onset of photoprotection could potentially increase biomass accumulation. Indeed, this has been realized in tobacco VPZ lines by overexpression of three photoprotective proteins in parallel. To explore the range of application of this approach, we generated Arabidopsis VPZ lines.
View Article and Find Full Text PDFCopper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood.
View Article and Find Full Text PDFIn natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms.
View Article and Find Full Text PDFCadmium toxicity interferes with essential metal homeostasis, which is a problem for both plant nutrition and the consumption of healthy food by humans. Copper uptake is performed by the members of the Arabidopsis high affinity copper transporter (COPT) family. One of the members, COPT5, is involved in copper recycling from the vacuole toward the cytosolic compartment.
View Article and Find Full Text PDFBackground: The Arabidopsis SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor SPL7 reprograms cellular gene expression to adapt plant growth and cellular metabolism to copper (Cu) limited culture conditions. Plant cells require Cu to maintain essential processes, such as photosynthesis, scavenging reactive oxygen species, cell wall lignification and hormone sensing. More specifically, SPL7 activity promotes a high-affinity Cu-uptake system and optimizes Cu (re-)distribution to essential Cu-proteins by means of specific miRNAs targeting mRNA transcripts for those dispensable.
View Article and Find Full Text PDFProteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress.
View Article and Find Full Text PDFProper copper (Cu) homeostasis is required by living organisms to maintain essential cellular functions. In the model plant Arabidopsis (Arabidopsis thaliana), the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 (SPL7) transcription factor participates in reprogramming global gene expression during Cu insufficiency in order to improve the metal uptake and prioritize its distribution to Cu proteins of major importance. As a consequence, spl7 null mutants show morphological and physiological disorders during Cu-limited growth, resulting in lower fresh weight, reduced root elongation, and chlorosis.
View Article and Find Full Text PDFCopper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins.
View Article and Find Full Text PDFSPL8 and miR156-targeted SPL genes are known to play an essential role in Arabidopsis anther development. Here we show that these SPL genes are also expressed within the developing gynoecium, where they redundantly control development of the female reproductive tract. Whereas the gynoecium morphology in the spl8 single mutant is largely normal, additional down-regulation of miR156-targeted SPL genes results in a shortened style and an apically swollen ovary narrowing onto an elongated gynophore.
View Article and Find Full Text PDFCopper is an essential micronutrient in higher plants, but it is toxic in excess. The fine adjustments required to fit copper nutritional demands for optimal growth are illustrated by the diverse, severe symptoms resulting from copper deficiency and excess. Here, a differential transcriptomic analysis was done between Arabidopsis thaliana plants suffering from mild copper deficiency and those with a slight copper excess.
View Article and Find Full Text PDFCopper is an essential micronutrient that functions as a redox cofactor in multiple plant processes, including photosynthesis. Arabidopsis thaliana possesses a conserved family of CTR-like high-affinity copper transport proteins denoted as COPT1-5. COPT1, the only family member that is functionally characterized, participates in plant copper acquisition.
View Article and Find Full Text PDFPlants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2007
Copper (Cu) chaperones constitute a family of small Cu+-binding proteins required for Cu homeostasis in eukaryotes. The ATX1 family of Cu chaperones specifically delivers Cu to heavy metal P-type ATPases. The plant Arabidopsis thaliana expresses the ATX1-like Cu chaperone CCH, which exhibits a plant-specific carboxy-terminal domain (CTD) with unique structural properties.
View Article and Find Full Text PDF