Publications by authors named "Antonenko D"

Background: The outcome of major surgery is determined not only by the success of the procedure itself but also by its neurocognitive effects. We previously reported improved cognition following spine surgery (Müller et al. 2023 Spine), but the mechanisms underlying these changes remain unknown.

View Article and Find Full Text PDF

Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that allows the modulation of the excitability and plasticity of the human brain. Focalized tDCS setups use specific electrode arrangements to constrain the current flow to circumscribed brain regions. However, the effectiveness of focalized tDCS can be compromised by electrode positioning errors on the scalp, resulting in significant reductions of the current dose reaching the target brain regions for tDCS.

View Article and Find Full Text PDF
Article Synopsis
  • Multipin dry electrodes (dry EEG) offer a quicker and easier way to collect brain activity data compared to traditional wet EEG, making them suitable for research in neuropsychiatric disorders.
  • The study involved 33 healthy participants and compared the performance of wet and dry EEG systems in measuring brain activity during resting states and specific tasks, using metrics like mismatch negativity (MMN) and connectivity measures.
  • Results indicated that while dry EEG could reliably detect MMN and resting-state connectivity, it performed slightly worse in terms of amplitude and theta power, suggesting its potential utility despite differences in signal quality.
View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) has been studied extensively for its potential to enhance human cognitive functions in healthy individuals and to treat cognitive impairment in various clinical populations. However, little is known about how tDCS modulates the neural networks supporting cognition and the complex interplay with mediating factors that may explain the frequently observed variability of stimulation effects within and between studies. Moreover, research in this field has been characterized by substantial methodological variability, frequent lack of rigorous experimental control and small sample sizes, thereby limiting the generalizability of findings and translational potential of tDCS.

View Article and Find Full Text PDF

Remembering objects and their associated location (object-location memory; OLM), is a fundamental cognitive function, mediated by cortical and subcortical brain regions. Previously, the combination of OLM training and transcranial direct current stimulation (tDCS) suggested beneficial effects, but the evidence remains heterogeneous. Here, we applied focal tDCS over the right temporoparietal cortex in 52 participants during a two-day OLM training, with anodal tDCS (2 mA, 20 min) or sham (40 s) on the first day.

View Article and Find Full Text PDF

Objective: Electrode positioning errors contribute to variability of transcranial direct current stimulation (tDCS) effects. We investigated the impact of electrode positioning errors on current flow for tDCS set-ups with different focality.

Methods: Deviations from planned electrode positions were determined using data acquired in an experimental study (N = 240 datasets) that administered conventional and focal tDCS during magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults.

View Article and Find Full Text PDF

Older adults demonstrate difficulties in sequential decision-making, which is partly attributed to under-recruitment of prefrontal networks. It is, therefore, important to understand the mechanisms that may improve this ability. This study investigated the effectiveness of an 18-sessions, home-based cognitive intervention and the neural mechanisms that underpin individual differences in intervention effects.

View Article and Find Full Text PDF

Background: Repeated sessions of training and non-invasive brain stimulation have the potential to enhance cognition in patients with cognitive impairment. We hypothesized that combining cognitive training with anodal transcranial direct current stimulation (tDCS) will lead to performance improvement in the trained task and yield transfer to non-trained tasks.

Methods: In our randomized, sham-controlled, double-blind study, 46 patients with cognitive impairment (60-80 years) were randomly assigned to one of two interventional groups.

View Article and Find Full Text PDF

Certain neurophysiological characteristics of sleep, in particular slow oscillations (SOs), sleep spindles, and their temporal coupling, have been well characterised and associated with human memory abilities. Delta waves, which are somewhat higher in frequency and lower in amplitude compared to SOs, and their interaction with spindles have only recently been found to play a critical role in memory processing of rodents, through a competitive interaction between SO-spindle and delta-spindle coupling. However, human studies that comprehensively address delta wave interactions with spindles and SOs, as well as their functional role for memory are still lacking.

View Article and Find Full Text PDF

Executive functions, essential for daily life, are known to be impaired in older age. Some executive functions, including working memory updating and value-based decision-making, are specifically sensitive to age-related deterioration. While their neural correlates in young adults are well-described, a comprehensive delineation of the underlying brain substrates in older populations, relevant to identify targets for modulation against cognitive decline, is missing.

View Article and Find Full Text PDF

The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.

View Article and Find Full Text PDF

Task shielding is an important executive control demand in dual-task performance enabling the segregation of stimulus-response translation processes in each task to minimize between-task interference. Although neuroimaging studies have shown activity in left dorsolateral prefrontal cortex (dlPFC) during various multitasking performances, the specific role of dlPFC in task shielding, and whether non-invasive brain stimulation (NIBS) may facilitate task shielding remains unclear. We therefore applied a single-blind, crossover sham-controlled design in which 34 participants performed a dual-task experiment with either anodal transcranial direct current stimulation (atDCS, 1 mA, 20 min) or sham tDCS (1 mA, 30 s) over left dlPFC.

View Article and Find Full Text PDF

Background: Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species.

View Article and Find Full Text PDF

Introduction: With the worldwide increase of life expectancy leading to a higher proportion of older adults experiencing age-associated deterioration of cognitive abilities, the development of effective and widely accessible prevention and therapeutic measures has become a priority and challenge for modern medicine. Combined interventions of cognitive training and transcranial direct current stimulation (tDCS) have shown promising results for counteracting age-associated cognitive decline. However, access to clinical centres for repeated sessions is challenging, particularly in rural areas and for older adults with reduced mobility, and lack of clinical personnel and hospital space prevents extended interventions in larger cohorts.

View Article and Find Full Text PDF

Subjective cognitive decline (SCD), as expressed by older adults, is associated with negative affect, which, in turn, is a likely risk factor for Alzheimer's Disease (AD). This study assessed the associations between negative affective burden, cognitive functioning, and functional connectivity in networks vulnerable to AD in the context of SCD. Older participants (60-90 years) with SCD (n = 51) and healthy controls (n = 50) were investigated in a cross-sectional study.

View Article and Find Full Text PDF

Introduction: A substantial number of patients diagnosed with COVID-19 experience long-term persistent symptoms. First evidence suggests that long-term symptoms develop largely independently of disease severity and include, among others, cognitive impairment. For these symptoms, there are currently no validated therapeutic approaches available.

View Article and Find Full Text PDF

Neural mechanisms of behavioral improvement induced by repeated transcranial direct current stimulation (tDCS) combined with cognitive training are yet unclear. Previously, we reported behavioral effects of a 3-day visuospatial memory training with concurrent anodal tDCS over the right temporoparietal cortex in older adults. To investigate intervention-induced neural alterations we here used functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) datasets available from 35 participants of this previous study, acquired before and after the intervention.

View Article and Find Full Text PDF

Introduction: Given rapid global population aging, developing interventions against age-associated cognitive decline is an important medical and societal goal. We evaluated a cognitive training protocol combined with transcranial direct current stimulation (tDCS) on trained and non-trained functions in non-demented older adults.

Methods: Fifty-six older adults (65-80 years) were randomly assigned to one of two interventional groups, using age and baseline performance as strata.

View Article and Find Full Text PDF

Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability.

View Article and Find Full Text PDF

Background: Head and brain anatomy have been related to e-field strength induced by transcranial electrical stimulation (tES). Individualization based on anatomic factors require high-quality structural magnetic resonance images, which are not always available. Head circumference (HC) can serve as an alternative means, but its linkage to electric field strength has not yet been established.

View Article and Find Full Text PDF