Publications by authors named "Antonenka U"

BACKGROUNDUntil recently, multidrug-resistant TB (MDR-TB) was treated with lengthy and toxic regimens. New three-drug anti-TB regimens raise the question of whether they are sufficiently active for MDR-TB in Central Asia, an MDR-TB hotspot region.METHODSIn a cohort of rifampicin-resistant (RR) and MDR-TB patients in the Kyrgyz Republic, we investigated the impact of the number of drugs that were tested susceptible by whole-genome sequencing (WGS) and conventional drug susceptibility testing (DST) and used for treatment on the treatment response, defined as 'matches'.

View Article and Find Full Text PDF

Background: Health care workers (HCW) are at increased risk of TB infection due to their close contact with infected patients with active TB. The objectives of the study were (1) to assess the prevalence of LTBI among HCW in the Northern Kyrgyz Republic, and (2) to determine the association of LTBI with job positions or departments.

Methods: HCWs from four TB hospitals in the Northern Kyrgyz Republic were tested with the interferon-gamma release assay (IGRA) Quantiferon-TB Gold plus (QFT) for the detection of an immune response to TB as marker of TB infection.

View Article and Find Full Text PDF

Whole genome sequencing (WGS) is revolutionary for diagnostics of TB and its mutations associated with drug-resistances, but its uptake in low- and middle-income countries is hindered by concerns of implementation feasibility. Here, we provide a proof of concept for its successful implementation in such a setting. WGS was implemented in the Kyrgyz Republic.

View Article and Find Full Text PDF

Background: Effective active case finding (ACF) activities are essential for early identification of new cases of active tuberculosis (TB) and latent TB infection (LTBI). Accurate diagnostics as well as the ability to identify contacts at high risk of infection are essential for ACF, and have not been systematically reported from Central Asia. The objective was to implement a pilot ACF program to determine the prevalence and risk factors for LTBI and active TB among contacts of individuals with TB in Kyrgyz Republic using Quantiferon-TB Gold plus (QuantiFERON).

View Article and Find Full Text PDF

Background: Drug-resistant tuberculosis (TB) is a major public health concern threathing the success of TB control efforts, and this is particularily problematic in Central Asia. Here, we present the first analysis of the population structure of Mycobacterium tuberculosis complex isolates in the Central Asian republics Uzbekistan, Tajikistan, and Kyrgyzstan.

Methods: The study set consisted of 607 isolates with 235 from Uzbekistan, 206 from Tajikistan, and 166 from Kyrgyzstan.

View Article and Find Full Text PDF

BACKGROUND Abbott RealTi MTB RIF/INH Resistance (RT RIF/INH) is a new assay for the detection of resistance to rifampicin (RIF) and isoniazid (INH) in tuberculosis (TB) patients. OBJECTIVE To evaluate the capacity of RT RIF/INH to detect resistance-associated mutations in target genes. METHODS A total of 311 strains that had been pre-characterised using genotypic methods (GenoType MTBDR, Sanger sequencing) and phenotypic drug susceptibility testing were subjected to DNA extraction on Abbott 2000 and analysed using RT RIF/INH.

View Article and Find Full Text PDF

Setting: Xpert® MTB/RIF is the most widely used molecular assay for rapid diagnosis of tuberculosis (TB). The number of polymerase chain reaction cycles after which detectable product is generated (cycle threshold value, CT) correlates with the bacillary burden.OBJECTIVE To investigate the association between Xpert CT values and smear status through a systematic review and individual-level data meta-analysis.

View Article and Find Full Text PDF

The Abbott RealTime MTB (RT MTB) assay is a new automated nucleic acid amplification test for the detection of Mycobacterium tuberculosis complex (MTBC) in clinical specimens. In combination with the RealTime MTB INH/RIF (RT MTB INH/RIF) resistance assay, which can be applied to RT MTB-positive specimens as an add-on assay, the tests also indicate the genetic markers of resistance to isoniazid (INH) and rifampin (RIF). We aimed to evaluate the diagnostic sensitivity and specificity of RT MTB using different types of respiratory and extrapulmonary specimens and to compare performance characteristics directly with those of the FluoroType MTB assay.

View Article and Find Full Text PDF

Background: Nucleic acid amplification assays allow for the rapid and accurate detection of Mycobacterium tuberculosis (MTB) directly in clinical specimens thereby facilitating diagnosis of tuberculosis (TB). With the fully automated Xpert MTB/RIF system (Cepheid) an innovative solution of TB diagnostics has been launched. We performed a direct head-to-head comparison of Xpert MTB/RIF with two widely used commercial assays, ProbeTec ET DTB (DTB) (Becton-Dickinson) and COBAS TaqMan MTB (CTM-MTB) (Roche).

View Article and Find Full Text PDF

Autoagglutination (AA) is a protective phenotypic trait facilitating survival of bacteria in hostile environments and in the host during infection. Autoagglutination factors (AFs) that possess self-associating ability are currently characterized in many Gram-negative bacteria, but Yersinia pestis AFs are still a matter of debate. Previously, we have shown that AF of Hms(-) strain Y.

View Article and Find Full Text PDF

Background: High-pathogenic Y. enterocolitica ssp. enterocolitica caused several human outbreaks in Northern America.

View Article and Find Full Text PDF

We report here the first finished and annotated genome sequence of a representative of the most epidemiologically successful Yersinia group, Y. enterocolitica subsp. palearctica strain Y11, serotype O:3, biotype 4.

View Article and Find Full Text PDF

The structures of the N-terminal domains of two integrases of closely related but not identical asn tDNA-associated genomic islands, Yersinia HPI (high pathogenicity island; encoding siderophore yersiniabactin biosynthesis and transport) and an Erwinia carotovora genomic island with yet unknown function, HAI7, have been resolved. Both integrases utilize a novel four-stranded beta-sheet DNA-binding motif, in contrast to the known proteins that bind their DNA targets by means of three-stranded beta-sheets. Moreover, the beta-sheets in Int(HPI) and Int(HAI7) are longer than those in other integrases, and the structured helical N terminus is positioned perpendicularly to the large C-terminal helix.

View Article and Find Full Text PDF

Five coagulase-negative, novobiocin-susceptible staphylococcal strains were isolated from human blood cultures in different German and Belgian medical facilities. A novel species, 'Staphylococcus pettenkoferi' was proposed recently to accommodate two of these strains (B3117(T) and A6664), although the name was not validly published. All five strains belonged to the genus Staphylococcus because they were non-motile, Gram-positive, catalase-positive cocci with peptidoglycan type (A3 alpha type L-lys-gly(2-4)-L-Ser-Gly), menaquinone pattern (MK-7, MK-6 and MK-8) and major cellular fatty acids (ai-C(15 : 0), ai-C(17 : 0) and i-C(15 : 0)) that corresponded to those of staphylococci.

View Article and Find Full Text PDF

Two genomic islands, namely the high-pathogenicity island (HPI) and Ecoc54N target the same asn tRNA genes to integrate into the bacterial chromosome. The HPI encodes the siderophore yersiniabactin in the highly pathogenic Yersinia group (Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica 1B) whilst the Ecoc54N island possibly encodes a polyketide synthase with an unknown function in the uropathogenic Escherichia coli CFT073 strain. HPI encodes the recombinase that promotes site-specific recombination (both integrative and excisive) with its corresponding attachment targets.

View Article and Find Full Text PDF

The high-pathogenicity island (HPI) encodes a highly efficient yersiniabactin system of iron acquisition responsible for mouse lethality in Yersinia. Although the HPI is widely disseminated among Enterobacteriaceae it lacks functions necessary for its replication and transmission. Therefore, the mechanism of its horizontal transfer and circulation is completely obscure.

View Article and Find Full Text PDF