Publications by authors named "Antonello Provenzale"

We introduce a georeferenced dataset of Net Ecosystem Exchange (NEE), Ecosystem Respiration (ER) and meteo-climatic variables (air and soil temperature, air relative humidity, soil volumetric water content, pressure, and solar irradiance) collected at the Nivolet Plain in Gran Paradiso National Park (GPNP), western Italian Alps, from 2017 to 2023. NEE and ER are derived by measuring the temporal variation of CO concentration obtained by the enclosed chamber method. We used a customised portable non-steady-state dynamic flux chamber, paired with an InfraRed Gas Analyser (IRGA) and a portable weather station, measuring CO fluxes at a number of points (around 20 per site and per day) within five different sites during the snow-free season (June to October).

View Article and Find Full Text PDF

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge.

View Article and Find Full Text PDF

Landscapes nearby glaciers are disproportionally affected by climate change, but we lack detailed information on microclimate variations that can modulate the impacts of global warming on proglacial ecosystems and their biodiversity. Here, we use near-subsurface soil temperatures in 175 stations from polar, equatorial and alpine glacier forelands to generate high-resolution temperature reconstructions, assess spatial variability in microclimate change from 2001 to 2020, and estimate whether microclimate heterogeneity might buffer the severity of warming trends. Temporal changes in microclimate are tightly linked to broad-scale conditions, but the rate of local warming shows great spatial heterogeneity, with faster warming nearby glaciers and during the warm season, and an extension of the snow-free season.

View Article and Find Full Text PDF

AbstractAcross plant communities worldwide, fire regimes reflect a combination of climatic factors and plant characteristics. To shed new light on the complex relationships between plant characteristics and fire regimes, we developed a new conceptual mechanistic model that includes plant competition, stochastic fires, and fire-vegetation feedback. Considering a single standing plant functional type, we observed that highly flammable and slowly colonizing plants can persist only when they have a strong fire response, while fast colonizing and less flammable plants can display a larger range of fire responses.

View Article and Find Full Text PDF

The dynamics of carbon dioxide fluxes in the high-altitude Alpine Critical Zone is only partially understood. The complex geomorphology induces significant spatial heterogeneity, and a strong interannual variability is present in the often-extreme climatic and environmental conditions of Alpine ecosystems. To explore the relative importance of the spatial and temporal variability of CO2 fluxes, we analysed a set of in-situ measurements obtained during the summers from 2018 to 2021 in four sampling plots, characterised by soils with different underlying bedrock within the same watershed in the Nivolet plain, in the Gran Paradiso National Park, western Italian Alps.

View Article and Find Full Text PDF

The detection of cause-effect relationships from the analysis of paleoclimatic records is a crucial step to disentangle the main mechanisms at work in the climate system. Here, we show that the approach based on the generalized Fluctuation-Dissipation Relation, complemented by the analysis of the Transfer Entropy, allows the causal links to be identified between temperature, CO[Formula: see text] concentration and astronomical forcing during the glacial cycles of the last 800 kyr based on Antarctic ice core records. When considering the whole spectrum of time scales, the results of the analysis suggest that temperature drives CO[Formula: see text] concentration, or that are both driven by the common astronomical forcing.

View Article and Find Full Text PDF

Environmental stochasticity affects population dynamics in a variety of ways, including the possibility of drastic modifications in the stability properties of the ecosystem. In this work, we investigate a case of coupled host-parasitoid dynamics adopting Beddington's conceptual two-dimensional map. We stochastically perturb some of the parameters controlling either the host dynamics or the host-parasitoid interaction, observing a dramatic change in the system dynamics with the emergence of on-off intermittency, a behavior characterized by the irregular alternation between quiescent phases and sudden population bursts.

View Article and Find Full Text PDF

Our work aims to assess how butterfly communities in the Italian Maritime Alps changed over the past 40 years, in parallel with altitudinal shifts occurring in plant communities. In 2019, we sampled butterflies at 7 grassland sites, between 1300-1900 m, previously investigated in 2009 and 1978, by semi-quantitative linear transects. Fine-scale temperature and precipitation data elaborated by optimal interpolation techniques were used to quantify climate changes.

View Article and Find Full Text PDF

High-Arctic ecosystems are strongly affected by climate change, and it is still unclear whether they will become a carbon source or sink in the next few decades. In turn, such knowledge gaps on the drivers and the processes controlling CO fluxes and storage make future projections of the Arctic carbon budget a challenging goal. During summer 2019, we extensively measured CO fluxes at the soil-vegetation-atmosphere interface, together with basic meteoclimatic variables and ecological characteristics in the Bayelva river basin near Ny Ålesund, Spitzbergen, Svalbard (NO).

View Article and Find Full Text PDF

Long-term studies are essential to understand the impacts of global changes on the multiple facets of biological diversity. Here, we use distribution data for over 600 species of arthropods collected over 150 years from locations across Italy and test how multiple environmental stressors (climate, land use and human population density) influenced assemblage composition and functionality. By carefully reconstructing the temporal changes in these stressors, we explicitly tested how environmental changes can determine the observed changes in taxonomic and functional diversity.

View Article and Find Full Text PDF

Clustering of plumes in turbulent Rayleigh-Bénard convection has been numerically observed in low-Prandtl-number fluids. In this framework, turbulent plumes undergo a phase-separation process leading to large-scale clusters and circulations, sometimes called plume superstructures and reminiscent of solar granulation and supergranulation. On the other hand, the possible presence of large-scale plume aggregates has not been explored in the case of large values of the Prandtl number, Pr, relevant to geological settings such as convection in planetary interiors.

View Article and Find Full Text PDF

In high mountains, the effects of climate change are manifesting most rapidly. This is especially critical for the high-altitude carbon cycle, for which new feedbacks could be triggered. However, mountain carbon dynamics is only partially known.

View Article and Find Full Text PDF

Understanding and counteracting biodiversity losses requires quantitative knowledge on species distribution and abundance across space and time, as well as integrated and interoperable information on climate conditions and climatic changes. In this paper we developed a new biodiversity-climate database for Italy, ClimCKmap, based on the critical analysis, quality estimation and subsequent integration of the CKmap database with several high-resolution climate datasets. The original database was quality-checked for errors in toponym, species name and dating; the retained records were georeferenced and their distribution polygonised via Voronoi tessellation.

View Article and Find Full Text PDF

The observed trend towards warmer and drier conditions in southern Europe is projected to continue in the next decades, possibly leading to increased risk of large fires. However, an assessment of climate change impacts on fires at and above the 1.5 °C Paris target is still missing.

View Article and Find Full Text PDF

Societal exposure to large fires has been increasing in recent years. Estimating the expected fire activity a few months in advance would allow reducing environmental and socio-economic impacts through short-term adaptation and response to climate variability and change. However, seasonal prediction of climate-driven fires is still in its infancy.

View Article and Find Full Text PDF

Protected areas (PAs) constitute major tools in nature conservation. In the European Union (EU), the Birds and Habitats Directives are the most important policies for conservation strategy, legally preserving Europe's characteristic, rare, endemic and threatened biota. We used occurrence data for species listed in the directives' Annexes to assess the uniqueness of major PAs in the EU (National Parks, Biosphere Reserves); this is important for preserving the EU's focal species.

View Article and Find Full Text PDF

Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers, and the threats upon them.

View Article and Find Full Text PDF

Summer fires frequently rage across Mediterranean Europe, often intensified by high temperatures and droughts. According to the state-of-the-art regional fire risk projections, in forthcoming decades climate effects are expected to become stronger and possibly overcome fire prevention efforts. However, significant uncertainties exist and the direct effect of climate change in regulating fuel moisture (e.

View Article and Find Full Text PDF

We apply the Z-control approach to a generalized predator-prey system and consider the specific case of indirect control of the prey population. We derive the associated Z-controlled model and investigate its properties from the point of view of the dynamical systems theory. The key role of the design parameter λ for the successful application of the method is stressed and related to specific dynamical properties of the Z-controlled model.

View Article and Find Full Text PDF

Forest fires are a serious environmental hazard in southern Europe. Quantitative assessment of recent trends in fire statistics is important for assessing the possible shifts induced by climate and other environmental/socioeconomic changes in this area. Here we analyse recent fire trends in Portugal, Spain, southern France, Italy and Greece, building on a homogenized fire database integrating official fire statistics provided by several national/EU agencies.

View Article and Find Full Text PDF

Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.

View Article and Find Full Text PDF

Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds.

View Article and Find Full Text PDF

Coherent vortices in two-dimensional turbulence induce far-field effects that stabilize vorticity filaments and inhibit the generation of new vortices. We show that the large-scale energy sink often included in numerical simulations of statistically stationary two-dimensional turbulence reduces the stabilizing role of the vortices, leading to filament instability and to continuous formation of new coherent vortices. This counterintuitive effect sheds new light on the mechanisms responsible for vortex formation in forced-dissipated two-dimensional turbulence, and it has significant impact on the temporal evolution of the vortex population in freely decaying turbulence.

View Article and Find Full Text PDF

Turbulent Rayleigh-Bénard convection produces fields of intense updrafts and downdrafts that are responsible for much of the vertical heat transport. These structures, called plumes or thermals, have horizontal scales comparable to the thicknesses of the boundary layers in which they arise. In the three-dimensional numerical simulations reported here, we have observed that convective plumes organize themselves into clusters with horizontal scales that grow with time and reach the width of the computational domain.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how passive Lagrangian tracers move in three-dimensional quasigeostrophic turbulence through numerical simulations and compares it to two-dimensional barotropic turbulence.
  • Despite the differences in their Eulerian characteristics, the movement of tracers in the two systems shows remarkable similarities, highlighting the impact of coherent vortices on mixing and dispersion.
  • The findings suggest that insights gained from studying particle dynamics in two-dimensional barotropic turbulence are applicable to more complex baroclinic flows found in atmospheric and oceanic dynamics.
View Article and Find Full Text PDF