The counting and characterization of neurons in primary cultures have long been areas of significant scientific interest due to their multifaceted applications, ranging from neuronal viability assessment to the study of neuronal development. Traditional methods, often relying on fluorescence or colorimetric staining and manual segmentation, are time consuming, labor intensive, and prone to error, raising the need for the development of automated and reliable methods. This paper delves into the evaluation of three pivotal deep learning techniques: semantic segmentation, which allows for pixel-level classification and is solely suited for characterization; object detection, which focuses on counting and locating neurons; and instance segmentation, which amalgamates the features of the other two but employing more intricate structures.
View Article and Find Full Text PDFAims: There are several candidate biomarkers for AD and PD which differ in sensitivity, specificity, cost-effectiveness, invasiveness, logistical and technical demands. This study is aimed to test whether plasma concentration of unfolded p53 may help to discriminate among the neurodegenerative processes occurring in Mild Cognitive Impairment, Alzheimer's disease and Parkinson's disease.
Methods: An electrochemical immunosensor was used to measure unfolded p53 in plasma samples of 20 Mild Cognitive Impairment (13 males/7 females; mean age 74.
Synchronization and bursting activity are intrinsic electrophysiological properties of in vivo and in vitro neural networks. During early development, cortical cultures exhibit a wide repertoire of synchronous bursting dynamics whose characterization may help to understand the parameters governing the transition from immature to mature networks. Here we used machine learning techniques to characterize and predict the developing spontaneous activity in mouse cortical neurons on microelectrode arrays (MEAs) during the first three weeks in vitro.
View Article and Find Full Text PDFRepurposing ketamine in the therapy of depression could well represent a breakthrough in understanding the etiology of depression. Ketamine was originally used as an anesthetic drug and later its use was extended to other therapeutic applications such as analgesia and the treatment of addiction. At the same time, the abuse of ketamine as a recreational drug has generated a concern for its psychotropic and potential long-term effects; nevertheless, its use as a fast acting antidepressant in treatment-resistant patients has boosted the interest in the mechanism of action both in psychiatry and in the wider area of neuroscience.
View Article and Find Full Text PDFPurpose: The mild cognitive impairment (MCI) is a neurocognitive disorder which involves cognitive impairments beyond those expected for the age and education of the subject but are not significant enough to interfere with instrumental activities of daily living. The identification of individuals with MCI is particularly important for those who might benefit from new therapies. The aim of this work is to propose a comprehensive neuropsychological protocol to achieve early diagnosis of MCI.
View Article and Find Full Text PDFProrocentroic acid (PA) was isolated from the dinoflagellate Relative configurations for its 35 asymmetric centers were determined by analysis of NMR data including heteronuclear couplings and quantum mechanical calculations. PA was tested by using murine cortical neurons grown on microelectrode arrays. Long-term exposure to subtoxic concentrations induced a significant reorganization of neuronal signaling, mainly by changes in the bursting activity.
View Article and Find Full Text PDFThe presence of semantic memory dysfunction in Alzheimer's disease (AD) has been widely investigated. Several studies have showed a higher degree of impairment in naming persons and objects, compared to general semantic knowledge in early stages of AD. The aim of this study was to investigate if the Famous Faces Naming Test can help to differentiate patients with mild cognitive impairment (MCI) who will progress to AD and those who will not.
View Article and Find Full Text PDFIn this work, bifunctional core@shell Au@Pt/Au NPs are presented as novel tags for electrochemical immunosensing. Au@Pt/Au NPs were synthesized following a chemical route based on successive metal depositions and galvanic replacement reactions from the starting AuNPs. Au protuberances growth on the surface of Au@Pt NPs allowed their easy bioconjugation with antibodies, while the high catalytic Pt surface area was approached for their sensitive detection through the electrocatalyzed water oxidation reaction (WOR) at neutral pH.
View Article and Find Full Text PDFAlzheimer's disease is one of the most common causes of dementia nowadays, and its prevalence increases over time. Because of this and the difficulty of its diagnosis, accurate methods for the analysis of specific biomarkers for an early diagnosis of this disease are much needed. Recently, the levels of unfolded isoform of the multifunctional protein p53 in plasma have been proved to increase selectively in Alzheimer's Disease patients in comparison with healthy subjects, thus entering the list of biomarkers that can be used for the diagnosis of this illness.
View Article and Find Full Text PDFDomoic acid (DOM) is an excitatory amino acid analog of kainic acid (KA) that acts through glutamic acid (GLU) receptors, inducing a fast and potent neurotoxic response. Here, we present evidence for an enhancement of excitotoxicity following exposure of cultured cerebellar granule cells to DOM in the presence of lower than physiological Na+ concentrations. The concentration of DOM that reduced by 50% neuronal survival was approximately 3 µM in Na+-free conditions and 16 µM in presence of a physiological concentration of extracellular Na+.
View Article and Find Full Text PDFBackground: Many studies suggest oxidative stress as an early feature of Alzheimer's Disease (AD). However, evidence of established oxidative stress in AD peripheral cells is still inconclusive, possibly due to both, differences in the type of samples and the heterogeneity of oxidative markers used in different studies.
Objective: The aim of this study was to evaluate blood-based redox alterations in Alzheimer's Disease in order to identify a peculiar disease profile.
Belizentrin (1), a novel 25-membered polyketide-derived macrocycle, was isolated from cultures of the marine dinoflagellate Prorocentrum belizeanum. This metabolite is the first member of an unprecedented class of polyunsaturated and polyhydroxylated macrolactams. The structure of 1 was primarily determined by NMR and computational methods.
View Article and Find Full Text PDFOkadaic acid (OKA) and analogues are frequent contaminants of coastal waters and seafood. Structure analysis of the isolated OKA analogue 19-epi-OKA showed important conformation differences expected to result in lower protein phosphatase (PP) inhibitory potencies than OKA. However, 19-epi-OKA and OKA inhibitory activities versus PP2A were unexpectedly found to be virtually equipotent.
View Article and Find Full Text PDFSynaptic function is critical for the brain to process experiences dictated by the environment requiring change over the lifetime of the organism. Experience-driven adaptation requires that receptors, signal transduction pathways, transcription and translational mechanisms within neurons respond rapidly over its lifetime. Adaptive responses communicated through the rapid firing of neurons are dependent upon the integrity and function of synapses.
View Article and Find Full Text PDFDysfunction or deficiency of the Na(+)/K(+)-ATPase appears to be a common event in a variety of pathological conditions in the central nervous system. Studies on neurotoxicity associated to impaired Na(+)/K(+)-ATPase activity have focused on NMDA receptors, while the involvement of non-NMDA receptors has been much less explored. We show that mild, non-toxic, exposures to the Na(+)/K(+)-ATPase inhibitor palytoxin (PTX) synergistically sensitized the vulnerability of neurons to normally non-toxic concentrations of domoic acid, leaving NMDA receptor-mediated excitotoxic response unaltered.
View Article and Find Full Text PDFWe have used protein phosphatase (PP) inhibitors and rat cerebellar glial cells in primary culture to investigate the role of PP activity in the ability of glial cells to detoxify exogenously applied hydrogen peroxide (H2O2). The marine toxin okadaic acid (OKA), a potent PP1 and PP2A inhibitor, caused a concentration-dependent degeneration of astrocytes and increased the formation of hydroperoxide radicals significantly. Subtoxic exposures to OKA significantly potentiated toxicity by exogenous H2O2.
View Article and Find Full Text PDFYessotoxin (YTX) and its analogues are disulphated polyether compounds of increasing occurrence in seafood. The biological effects of these algal toxins on mammals and the risk associated to their ingestion have not been clearly established. We have used primary cultures of rat cerebellar neurons to investigate whether YTX affected survival and functioning of central nervous system neurons.
View Article and Find Full Text PDFN-Methyl-D-aspartate (NMDA) at a subtoxic concentration (100 microM) promotes neuronal survival against glutamate-mediated excitotoxicity via a brain-derived neurotrophic factor (BDNF) autocrine loop in cultured cerebellar granule cells. The signal transduction mechanism(s) underlying NMDA neuroprotection, however, remains elusive. The mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3-K) pathways alter gene expression and are involved in synaptic plasticity and neuronal survival.
View Article and Find Full Text PDFDiarrhetic shellfish poisoning (DSP) toxins of algal origin are frequent contaminants of coastal waters and seafood. The potential risk for human health due to the continuous presence of these toxins in food has not been clearly established. We have used cerebellar primary cultures to investigate the effects of the DSP toxin dinophysistoxin-2 (DTX-2) on central nervous system neurons and glial cells.
View Article and Find Full Text PDFN-methyl-D-aspartic acid (NMDA) is an agonist at the homonymous receptor implicated in the development of neuronal sensitization and its behavioral correlates. An effective modulation of the NMDA effects, achieved also by uncompetitive antagonists, could contribute to controlling pain symptoms in several neuropathic syndromes. Because nefopam is a known analgesic derivative of orphenadrine and of its congener diphenhydramine, both uncompetitive NMDA receptor antagonists, we tested the effect of nefopam on the developing pain and neuronal anomalies in an animal model of chronic pain with NMDA receptor involvement.
View Article and Find Full Text PDFWe have investigated the actions of the H1 receptor antagonist terfenadine on voltage sensitive calcium channels and calcium-mediated pathways. We found that terfenadine prevented N-methyl-D-aspartate (NMDA)-mediated excitotoxicity following stimulation of L-type voltage sensitive calcium channels by the specific agonist BayK8644. The neuroprotective effect of terfenadine was concentration-dependent, 10 and 100 nM terfenadine providing 50 and 100% neuroprotection, respectively.
View Article and Find Full Text PDFWe have studied the effects of terfenadine on neurotoxicity and elevation of free cytoplasmic Ca2+ levels upon stimulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in cultured cerebellar neurons. Pre-exposure to terfenadine (5 microM, 5 h) significantly increased neuronal death following specific stimulation of receptors by 100 microM AMPA or by subtoxic concentrations of domoate (8 microM), stimuli that are non-toxic when applied to terfenadine-untreated sister cultures. Terfenadine potentiation was prevented by the transcription inhibitor actinomycin D and was significantly ameliorated by histamine (1 mM).
View Article and Find Full Text PDF