Low temperature is the main strategy to preserve fruit quality post-harvest, in the supply chain. Low temperatures reduce the respiration, ethylene emission, and enzymatic activities associated with senescence. Unfortunately, peaches are sensitive to low temperatures if exposed for long periods, resulting in physiological disorders that can compromise commercial quality.
View Article and Find Full Text PDFIn gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains.
View Article and Find Full Text PDFGene duplication played a fundamental role in eukaryote evolution and different copies of a given gene can be present in extant species, often with expressions and functions differentiated during evolution. We assume that, when such differentiation occurs in a gene copy, this may be indicated by its maintenance in all the derived species. To verify this hypothesis, we compared the histological expression domains of the three β-glucuronidase genes () present in with the GUS evolutionary tree in angiosperms.
View Article and Find Full Text PDFAnthocyanins protect plants against various biotic and abiotic stresses, and anthocyanin-rich foods exert benefits on human health due to their antioxidant activity. Nevertheless, little information is available on the influence of genetic and environmental factors on the anthocyanin content in olive fruits. Based on this consideration, the total anthocyanin content, the genes involved in anthocyanin biosynthesis, and three putative R2R3-MYB transcription factors were evaluated at different ripening stages in the drupes of the Carolea and Tondina cultivars, sampled at different altitudes in the Calabria region, Italy.
View Article and Find Full Text PDFPlant Sci
July 2023
Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.
View Article and Find Full Text PDFEpigenetics, referring to heritable gene regulatory information that is independent of changes in DNA sequences, is an important mechanism involved both in organism development and in the response to environmental events. About the epigenetic marks, DNA methylation is one of the most conserved mechanisms, playing a pivotal role in organism response to several biotic and abiotic stressors. Indeed, stress can induce changes in gene expression through hypo- or hyper-methylation of DNA at specific loci and/or in DNA methylation at the genome-wide level, which has an adaptive significance and can direct genome evolution.
View Article and Find Full Text PDF-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known.
View Article and Find Full Text PDFCold storage is used to extend peach commercial life, but can affect quality. Quality changes are assessed through the content of nutritionally relevant compounds, aroma, physical characters and/or sensorially. Here, six peach and nectarine cultivars were sampled at commercial harvest and after 7 days of 1 °C storage.
View Article and Find Full Text PDFNectarines are perishable fruits grown in Southern Europe, valued for their sensorial properties. Chilling is used in the supply chain for Northern European consumers, while Southern European consumers can access fresh, locally grown fruit or cold-stored supermarket fruit. Cold storage and fruit ripening affect texture and flavour.
View Article and Find Full Text PDFPremise: In Arabidopsis thaliana, the role of the most important key genes that regulate ovule development is widely known. In nonmodel species, and especially in gymnosperms, the ovule developmental processes are still quite obscure. In this study, we describe the putative roles of Ginkgo biloba orthologs of regulatory genes during ovule development.
View Article and Find Full Text PDFThe ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A.
View Article and Find Full Text PDFBackground: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables.
View Article and Find Full Text PDFGenerally, in gymnosperms, pollination and fertilization events are temporally separated and the developmental processes leading the switch from ovule integument into seed coat are still unknown. The single ovule integument of Ginkgo biloba acquires the typical characteristics of the seed coat long before the fertilization event. In this study, we investigated whether pollination triggers the transformation of the ovule integument into the seed coat.
View Article and Find Full Text PDFCadmium (Cd) is one of the most widespread polluting heavy metals in both terrestrial and aquatic environments and represents an extremely significant pollutant causing severe environmental and social problems due to its high toxicity and large solubility in water. In plants, the root is the first organ that get in contact with Cd. It is absorbed by the root system and translocated to the shoot and leaves through xylem loading, causing a variety of genetic, biochemical, and physiological damages.
View Article and Find Full Text PDFCoumarin is a phytotoxic natural compound able to affect plant growth and development. Previous studies have demonstrated that this molecule at low concentrations (100 µM) can reduce primary root growth and stimulate lateral root formation, suggesting an auxin-like activity. In the present study, we evaluated coumarin's effects (used at lateral root-stimulating concentrations) on the root apical meristem and polar auxin transport to identify its potential mode of action through a confocal microscopy approach.
View Article and Find Full Text PDFDNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways.
View Article and Find Full Text PDFUsually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial.
View Article and Find Full Text PDFPeaches have a short shelf life and require chilling during storage and transport. Peach aroma is important for consumer preference and determined by underlying metabolic pathways and gene expression. Differences in aroma (profiles of volatile organic compounds, VOCs) have been widely reported across cultivars and in response to cold storage.
View Article and Find Full Text PDFNatural herbicides that are based on allelopathy of compounds, can offer effective alternatives to chemical herbicides towards sustainable agricultural practices. Nerolidol, a sesquiterpenoid alcohol synthesized by many plant families, was shown to be the most effective allelopathic compound in a preliminary screening performed with several other sesquiterpenoids. In the present study, seedlings were treated for 14 d with various cis-nerolidol concentrations (0, 50, 100, 200, 400, and 800 µM) to investigate its effects on root growth and morphology.
View Article and Find Full Text PDFBackground: Olive (Olea europaea L.) is an emblematic oil tree crop in the Mediterranean basin. Currently, despite olive features as a moderately thermophilic species, its cultivation is worldwide spreading due to the health-related impact of olive products on human nutrition.
View Article and Find Full Text PDFTETRASPANIN (TET) genes encode conserved integral membrane proteins that are known in animals to function in cellular communication during gamete fusion, immunity reaction, and pathogen recognition. In plants, functional information is limited to one of the 17 members of the Arabidopsis (Arabidopsis thaliana) TET gene family and to expression data in reproductive stages. Here, the promoter activity of all 17 Arabidopsis TET genes was investigated by pAtTET::NUCLEAR LOCALIZATION SIGNAL-GREEN FLUORESCENT PROTEIN/β-GLUCURONIDASE reporter lines throughout the life cycle, which predicted functional divergence in the paralogous genes per clade.
View Article and Find Full Text PDFDehydrins belong to a protein family whose expression may be induced or enhanced by developmental process and environmental stresses that lead to cell dehydration. A dehydrin gene named OesDHN was isolated and characterized from oleaster (Olea europaea L. subsp.
View Article and Find Full Text PDFIn situ RNA-RNA hybridization (ISH) is a molecular method for localization of gene transcripts at the cellular level and is widely used to provide spatial and temporal information regarding gene expression. However, standard protocols are complex and laborious to implement, restricting analysis to one or a few genes at any one time, each one observed on separate ISH preparations. Multi-probe whole-mount in situ hybridization is a powerful technique to compare the expression patterns of two or more genes simultaneously in the same tissue or organ.
View Article and Find Full Text PDFBackground And Aims: Aside from those on Arabidopsis, very few studies have focused on spatial expression of cyclin-dependent kinases (CDKs) in root apical meristems (RAMs), and, indeed, none has been undertaken for open meristems. The extent of interfacing between cell cycle genes and plant growth regulators is also an increasingly important issue in plant cell cycle studies. Here spatial expression/localization of an A-type and B-type CDK, auxin and cytokinins are reported in relation to the hitherto unexplored anatomy of RAMs of Cucurbita maxima.
View Article and Find Full Text PDF