The tendency of individual CpG sites to be methylated is distinctive, non-random and well-regulated throughout the genome. We investigated the structural and spatial factors influencing CpGs methylation by performing an ultra-deep targeted methylation analysis on human, mouse and zebrafish genes. We found that methylation is not a random process and that closer neighboring CpG sites are more likely to share the same methylation status.
View Article and Find Full Text PDFPulmonary sarcomatoid carcinomas (PSC) are a rare group of lung cancer with a median overall survival of 9-12 months. PSC are divided into five histotypes, challenging to diagnose and treat. The identification of PSC biomarkers is warranted, but PSC molecular profile remains to be defined.
View Article and Find Full Text PDFBackground: In recent years, epigenetics has gained a central role in the understanding of the process of natural selection. It is now clear how environmental impacts on the methylome could promote methylation variability with direct effects on disease etiology as well as phenotypic and genotypic variations in evolutionary processes. To identify possible factors influencing inter-individual methylation variability, we studied methylation values standard deviation of 166 healthy individuals searching for possible associations with genomic features and evolutionary signatures.
View Article and Find Full Text PDFBackground: CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other hand, allow methylation profiles of cell populations to be studied at the single molecule level.
View Article and Find Full Text PDFWe performed ultra-deep methylation analysis at single molecule level of the promoter region of developmentally regulated D-Aspartate oxidase (Ddo), as a model gene, during brain development and embryonic stem cell neural differentiation. Single molecule methylation analysis enabled us to establish the effective epiallele composition within mixed or pure brain cell populations. In this framework, an epiallele is defined as a specific combination of methylated CpG within Ddo locus and can represent the epigenetic haplotype revealing a cell-to-cell methylation heterogeneity.
View Article and Find Full Text PDFDNA methylation is often analyzed by reporting the average methylation degree of each cytosine. In this study, we used a single molecule methylation analysis in order to look at the methylation conformation of individual molecules. Using D-aspartate oxidase as a model gene, we performed an in-depth methylation analysis through the developmental stages of 3 different mouse tissues (brain, lung, and gut), where this gene undergoes opposite methylation destiny.
View Article and Find Full Text PDFUnderstanding the biology and molecular pathogenesis of ovarian epithelial cancer (EOC) is key to developing improved diagnostic and prognostic indicators and effective therapies. Although research has traditionally focused on the hypothesis that high-grade serous carcinoma (HGSC) arises from the ovarian surface epithelium (OSE), recent studies suggest that additional sites of origin exist and a substantial proportion of cases may arise from precursor lesions located in the Fallopian tubal epithelium (FTE). In FTE cells, the transcription factor PAX8 is a marker of the secretory cell lineage and its expression is retained in 96% of EOC.
View Article and Find Full Text PDFObjective: Cross-sectional studies suggest the association between diabetic nephropathy and the PPARγ2 Pro12Ala polymorphism of the peroxisome proliferator-activated receptor γ2 (PPARγ2). Prospective data are limited to microalbuminuria and no information on renal function is available to date. The present study evaluates the association between the Pro12Ala polymorphism of PPARγ2 and the progression of albuminuria and decay in glomerular filtration rate (GFR) in type 2 diabetes.
View Article and Find Full Text PDFThe regions surrounding transcription start sites (TSSs) of genes play a critical role in the regulation of gene expression. At the same time, current evidence indicates that these regions are particularly stressed by transcription-related mutagenic phenomena. In this work we performed a genome-wide analysis of the distribution of single nucleotide polymorphisms (SNPs) inside the 10 kb region flanking human TSSs by dividing SNPs into four classes according to their frequency (rare, two intermediate classes, and common).
View Article and Find Full Text PDFBackground: CpG dinucleotide-rich genomic DNA regions, known as CpG islands (CGIs), can be methylated at their cytosine residues as an epigenetic mark that is stably inherited during cell mitosis. Differentially methylated regions (DMRs) are genomic regions showing different degrees of DNA methylation in multiple samples. In this study, we focused our attention on CGIs showing different DNA methylation between two culture replicas of the same cell line.
View Article and Find Full Text PDFBackground: Histone modification is an epigenetic mechanism that influences gene regulation in eukaryotes. In particular, histone modifications in CpG islands (CGIs) are associated with different chromatin states and with transcription activity. Changes in gene expression play a crucial role in adaptation and evolution.
View Article and Find Full Text PDFEnhanced oxidative stress and inflammation contribute to telomere erosion. Friedreich's ataxia is a neurodegenerative disorder caused by a reduction in frataxin expression that results in mitochondrial dysfunction and oxidative damage. Furthermore, frataxin deficiency induces a strong activation of inflammatory genes and neuronal death.
View Article and Find Full Text PDFMany decades of scientific investigation have proved the role of selective pressure in Homo Sapiens at least at the level of individual genes or loci. Nevertheless, there are examples of polygenic traits that are bound to be under selection, but studies devoted to apply population genetics methods to unveil such occurrence are still lacking. Stature provides a relevant example of well-studied polygenic trait for which is now available a genome-wide association study which has identified the genes involved in this trait, and which is known to be under selection.
View Article and Find Full Text PDFCADASIL is a hereditary systemic vasculopathy which affects mainly small cerebral arteries and is caused by mutations in the Notch3 gene. Misfolding of Notch3 is linked to endoplasmic reticulum stress and increased reactive oxygen species, which may result in dysfunction of endothelial cells, inflammation and ischemia. Oxidative stress and inflammation may induce a rapid telomere shortening in peripheral blood leukocytes (PBLs).
View Article and Find Full Text PDFDNA methylation at CpG islands (CGIs) is one of the most intensively studied epigenetic mechanisms. It is fundamental for cellular differentiation and control of transcriptional potential. DNA methylation is involved also in several processes that are central to evolutionary biology, including phenotypic plasticity and evolvability.
View Article and Find Full Text PDFBackground: Many natural phenomena are directly or indirectly related to latitude. Living at different latitudes, indeed, has its consequences with being exposed to different climates, diets, light/dark cycles, etc. In humans, one of the best known examples of genetic traits following a latitudinal gradient is skin pigmentation.
View Article and Find Full Text PDFBackground: This study evaluated the relationship between the G(-866)A polymorphism of the uncoupling protein 2 (UCP2) gene and high-sensitivity C reactive protein (hs-CRP) plasma levels in diabetic patients.
Methods: We studied 383 unrelated people with type 2 diabetes aged 40-70 years. Anthropometry, fasting lipids, glucose, HbA1c, and hs-CRP were measured.
Background: Cells from individuals with Friedreich's ataxia (FRDA) show reduced activities of antioxidant enzymes and cannot up-regulate their expression when exposed to oxidative stress. This blunted antioxidant response may play a central role in the pathogenesis. We previously reported that Peroxisome Proliferator Activated Receptor Gamma (PPARgamma) Coactivator 1-alpha (PGC-1alpha), a transcriptional master regulator of mitochondrial biogenesis and antioxidant responses, is down-regulated in most cell types from FRDA patients and animal models.
View Article and Find Full Text PDFGenetic differences both between individuals and populations are studied for their evolutionary relevance and for their potential medical applications. Most of the genetic differentiation among populations are caused by random drift that should affect all loci across the genome in a similar manner. When a locus shows extraordinary high or low levels of population differentiation, this may be interpreted as evidence for natural selection.
View Article and Find Full Text PDFFriedreich's ataxia is a neurodegenerative disease due to frataxin deficiency, and thus, drugs increasing the frataxin amount are excellent candidates for therapy. By screening Gene Expression Omnibus profiles, we identified records showing a frataxin response to the peroxisome proliferator-activated receptors gamma (PPAR-gamma) agonist rosiglitazone. We decided to investigate the effect of the PPAR-gamma agonist Azelaoyl PAF on the frataxin protein and mRNA expression profile.
View Article and Find Full Text PDFFriedreich's ataxia is an autosomal recessive neurodegenerative disease that is due to the loss of function of the frataxin protein. The molecular basis of this disease is still a matter of debate and treatments have so far focused on managing symptoms. Drugs that can increase the amount of frataxin protein offer a possible therapy for the disease.
View Article and Find Full Text PDFFriedreich ataxia (FRDA) patients are homozygous for expanded GAA triplet-repeat alleles in the FXN gene. Primary neurodegeneration involving the dorsal root ganglia (DRG) results in progressive ataxia. While it is known that DRG are inherently sensitive to frataxin deficiency, recent observations also indicate that they show age-dependent, further expansion of the GAA triplet-repeat mutation.
View Article and Find Full Text PDFObjective: Friedreich's ataxia patients are homozygous for expanded alleles of a GAA triplet-repeat sequence in the FXN gene. Patients develop progressive ataxia due to primary neurodegeneration involving the dorsal root ganglia (DRGs). The selective neurodegeneration is due to the sensitivity of DRGs to frataxin deficiency; however, the progressive nature of the disease remains unexplained.
View Article and Find Full Text PDFObjective: We explore the relationship among BMI, habitual diet, and the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor (PPAR)gamma2.
Research Design And Methods: The Pro12Ala variant was characterized in 343 unrelated type 2 diabetic patients who were consecutively seen at the outpatient clinic of a health district of the province of Naples. Anthropometric and laboratory parameters were measured; habitual diet was assessed by a validated semiquantitative food frequency questionnaire.