The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT.
View Article and Find Full Text PDFThe Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy.
View Article and Find Full Text PDFShwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between and its pseudogene, , provided the alleles observed in about 62% of SDS patients. We performed a reanalysis of the available WES files of a group of SDS patients with biallelic pathogenic variants, studying the results by next bioinformatic and protein structural analysis.
View Article and Find Full Text PDFIntroduction. Shwachman-Diamond Syndrome (SDS) is an autosomal-recessive disorder characterized by neutropenia, pancreatic exocrine insufficiency, skeletal dysplasia, and an increased risk for leukemic transformation. Biallelic mutations in the SBDS gene have been found in about 90% of patients.
View Article and Find Full Text PDFBackground: An isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q), are the most frequent anomalies in the bone marrow of patients with Shwachman-Diamond syndrome, which is caused in most cases by mutations of the SBDS gene. These clonal changes imply milder haematological symptoms and lower risk of myelodysplastic syndromes and acute myeloid leukaemia, thanks to already postulated rescue mechanisms.
Results: Bone marrow from fourteen patients exhibiting either the i(7)(q10) or the del(20)(q) and coming from two large cohorts of patients, were subjected to chromosome analyses, Fluorescent In Situ Hybridization with informative probes and array-Comparative Genomic Hybridization.
Background: Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue.
View Article and Find Full Text PDFIn Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene.
View Article and Find Full Text PDFShwachman-Diamond syndrome (SDS) (OMIM 260400) is a rare autosomal recessive disease characterized by exocrine pancreatic insufficiency, skeletal, and hematological abnormalities and bone marrow (BM) dysfunction. Mutations in the SBDS gene cause SDS. Clonal chromosome anomalies are often present in BM, i(7)(q10) and del(20q) being the most frequent ones.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Mutations in either ENG or ACVRL1 account for around 85% of cases, and 10% are large deletions and duplications. Here we present a large novel deletion in ACVRL1 gene and its molecular characterization in a 3 generation Italian family.
View Article and Find Full Text PDFBackground: Shwachman-Diamond syndrome is an autosomal recessive disorder in which severe bone marrow dysfunction causes neutropenia and an increased risk of leukemia. Recently, novel particulate cytoplasmic structures, rich in ubiquitinated and proteasomal proteins, have been detected in epithelial cells and neutrophils from patients with Helicobacter pylori gastritis and several epithelial neoplasms.
Design And Methods: Blood neutrophils from 13 cases of Shwachman-Diamond syndrome - ten with and three without SBDS gene mutation - and ten controls were investigated by confocal microscopy and ultrastructural immunocytochemistry using antibodies against ubiquitinated proteins, proteasomes, p62 protein, and Helicobacter pylori VacA, urease and outer membrane proteins.
Objective: External fistulas represent a disabling manifestation of Crohn's disease with a difficult curability and a high relapse rate despite a large therapeutic armamentarium. Stem cell therapy is a novel and promising approach for treatment of chronic inflammatory conditions. We therefore investigated the feasibility, safety and efficacy of serial intrafistular injections of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in the treatment of fistulising Crohn's disease.
View Article and Find Full Text PDFHereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterised by epistaxis, telangiectases, and multiorgan vascular dysplasia. Mutations of the ENG and ACVRL1 genes cause at least 80% of cases. We report the first case of merkeloma found in a patient with HHT carrying an ENG mutation.
View Article and Find Full Text PDFAn investigation of 22 new patients with Shwachman-Diamond syndrome (SDS) and the follow-up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non-clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age-related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients' ageing.
View Article and Find Full Text PDFEight patients with adult-onset type II glycogenosis (GSD II), all carrying the IVS1-13T
An investigation of 14 patients with Shwachman syndrome (SS), using standard and molecular cytogenetic methods and molecular genetic techniques, showed that (1) the i(7)(q10) is not, or not always, an isochromosome but may arise from a more complex mechanism, retaining part of the short arm; (2) the i(7)(q10) has no preferential parental origin; (3) clonal chromosome changes, such as chromosome 7 anomalies and del(20)(q11), may be present in the bone marrow (BM) for a long time without progressing to myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML); (4) the del(20)(q11) involves the minimal region of deletion typical of MDS/AML; (5) the rate of chromosome breaks is not significantly higher than in controls, from which it is concluded that SS should not be considered a breakage syndrome; (6) a specific kind of karyotype instability is present in SS, with chromosome changes possibly found in single cells or small clones, often affecting chromosomes 7 and 20, in the BM. Hence, we have confirmed our previous hypothesis that the SS mutation itself implies a mutator effect that is responsible for MDS/AML through these specific chromosome anomalies. This conclusion supports the practice of including cytogenetic monitoring in the follow-up of SS patients.
View Article and Find Full Text PDFNew researches have been performed on the analysis of some Italian dwelling structures dating from the Lower Paleolithic to Bronze Age. Different methods have been applied to each study according to the extensions of the areas explored. The following sites have been analyzed: Isernia La Pineta (Molise), Visogliano (Trieste) - Lower Paleolithic; Grotta del Cavallo (Lecce), Grotta Grande and Riparo del Molare (Salerno) - Middle Paleolithic; Grotta di Fumane (Verona), Riparo Tagliente (Verona), Grotta Continenza (Fucino L'Aquila), San Bartolomeo (Maiella Mountain, Abruzzo) - Upper Paleolithic; Mondeval de Sora (Belluno), Alpe Veglia (Verbania) and Grotta Edera (Aurisina, Trieste) -Mesolithic; Cala Giovanna Piano (Pianosa Island, Livorno), Contraguda (Perfugas, Sassari), Colle Santo Stefano (Fucino, L'Aquila), Catignano (Pescara), Settefonti (L'Aquila) - Neolithic; Castellaro Lagusello (Monzambano, Mantua) - Bronze Age.
View Article and Find Full Text PDFFamilial platelet disorder with propensity to acute myelogenous leukemia, or FPD/AML (OMIM #601399), is a rare autosomal dominant condition, with only 12 families reported. It is characterized by qualitative and quantitative platelet defects and predisposition to the development of myeloid malignancies. Causal mutations have been identified in the RUNX1 gene (also known as AML1, CBFA2) in the 11 families so far analyzed.
View Article and Find Full Text PDFA family is reported, in which two sisters presented with myelodysplastic syndrome (MDS), namely refractory anemia with excess of blasts in transformation (RAEB-t), and refractory anemia (RA). Bone marrow chromosome changes were present in both: trisomy and tetrasomy 8 (with a pericentric inversion of one chromosome 8) in the older sister, and monosomy 7 (with clones with additional trisomies 19 and 21) in the younger one. Molecular data were obtained on the parental chromosome involved in these numerical anomalies, which proved to be of paternal origin in these cases.
View Article and Find Full Text PDFThe trisomy 8 found in malignancies may derive from a constitutional trisomy 8 mosaicism (CT8M), and in these cases the trisomy itself may be regarded as the first mutation in a multistep carcinogenetic process. To assess the frequency of CT8M in hematological dysplastic and neoplastic disorders with trisomy 8, an informative sample of 14 patients was collected. The data ascertained included chromosome analyses of fibroblast cultures and of PHA-stimulated blood cultures in patients with normal blood differential count, as well as possible CT8M clinical signs.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.