Publications by authors named "Antonella Marte"

The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons rely on autophagy, a process that recycles damaged proteins and organelles, to maintain cellular health and function over their long lifespan, particularly in the face of challenges like starvation.
  • Research shows that a neuron-specific protein called APache plays a critical role in autophagy by helping transport autophagosomes back to the cell body, affecting synaptic health.
  • Silencing APache disrupts this transport, leading to an accumulation of autophagosomes at synapses which may contribute to early neurodegenerative issues linked to impaired autophagy.
View Article and Find Full Text PDF

High-pressure and temperature extraction (HPTE) can effectively recover bioactive compounds from olive pomace (OP). HPTE extract obtained by extracting OP with ethanol and water (50:50 /) at 180 °C for 90 min demonstrated a pronounced ability to preserve intracellular calcium homeostasis, shielding neurons from the harmful effects induced by N-methyl-d-aspartate (NMDA) receptor (NMDAR) overactivation, such as aberrant calpain activation. In this study, the extraction temperature was changed from 37 to 180 °C, and the extracts were evaluated for their antioxidant potency and ability to preserve crucial intracellular Ca-homeostasis necessary for neuronal survival.

View Article and Find Full Text PDF

PRRT2 is a neuronal protein that controls neuronal excitability and network stability by modulating voltage-gated Na channel (Nav). PRRT2 pathogenic variants cause pleiotropic syndromes including epilepsy, paroxysmal kinesigenic dyskinesia and episodic ataxia attributable to loss-of-function pathogenetic mechanism. Based on the evidence that the transmembrane domain of PRRT2 interacts with Nav1.

View Article and Find Full Text PDF

Proline-rich transmembrane protein 2 (PRRT2) is the single causative gene for pleiotropic paroxysmal syndromes, including epilepsy, kinesigenic dyskinesia, episodic ataxia, and migraine. PRRT2 is a neuron-specific type-2 membrane protein with a COOH-terminal intramembrane domain and a long proline-rich NH-terminal cytoplasmic region. A large array of experimental data indicates that PRRT2 is a neuron stability gene that negatively controls intrinsic excitability by regulating surface membrane localization and biophysical properties of voltage-dependent Na channels Nav1.

View Article and Find Full Text PDF

Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood.

View Article and Find Full Text PDF

Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein implicated in the control of neurotransmitter release and neural network stability. Accordingly, PRRT2 loss-of-function mutations associate with pleiotropic paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. PRRT2 is a negative modulator of the membrane exposure and biophysical properties of Na channels Na1.

View Article and Find Full Text PDF

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration.

View Article and Find Full Text PDF

The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown.

View Article and Find Full Text PDF

Loss-of-function mutations in proline-rich transmembrane protein-2 (PRRT2) cause paroxysmal disorders associated with defective Ca dependence of glutamatergic transmission. We find that either acute or constitutive PRRT2 deletion induces a significant decrease in the amplitude of evoked excitatory postsynaptic currents (eEPSCs) that is insensitive to extracellular Ca and associated with a reduced contribution of P/Q-type Ca channels to the EPSC amplitude. This synaptic phenotype parallels a decrease in somatic P/Q-type Ca currents due to a decreased membrane targeting of the channel with unchanged total expression levels.

View Article and Find Full Text PDF

PRoline-Rich Transmembrane protein-2 (PRRT2) is a recently described neuron-specific type-2 integral membrane protein with a large cytosolic N-terminal domain that distributes in presynaptic and axonal domains where it interacts with several presynaptic proteins and voltage-gated Na channels. Several PRRT2 mutations are the main cause of a wide and heterogeneous spectrum of paroxysmal disorders with a loss-of-function pathomechanism. The highest expression levels of PRRT2 in brain occurs in cerebellar granule cells (GCs) and cerebellar dysfunctions participate in the dyskinetic phenotype of PRRT2 knockout (KO) mice.

View Article and Find Full Text PDF

We have recently demonstrated that bioactive molecules, extracted by high pressure and temperature from olive pomace, counteract calcium-induced cell damage to different cell lines. Here, our aim was to study the effect of the same extract on murine cortical neurons, since the preservation of the intracellular Ca-homeostasis is essential for neuronal function and survival. Accordingly, we treated neurons with different stimuli in order to evoke cytotoxic glutamatergic activation.

View Article and Find Full Text PDF

Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both and LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes.

View Article and Find Full Text PDF
Article Synopsis
  • The LRRK2 protein has important functional areas at both ends that help it interact with other proteins, and mutations in the LRRK2 gene are associated with Parkinson's disease.
  • A new variant, E193K, in the N-terminal region of LRRK2 was examined for its effects on vesicle trafficking using advanced microscopy techniques.
  • The study found that the E193K variant disrupts LRRK2's normal binding to synaptic vesicles and enhances vesicle fusion, indicating that mutations in LRRK2 can significantly affect its role in cellular processes related to Parkinson's disease.
View Article and Find Full Text PDF

DEP-domain containing 5 (DEPDC5) is part of the GATOR1 complex that functions as key inhibitor of the mechanistic target of rapamycin complex 1 (mTORC1). Loss-of-function mutations in DEPDC5 leading to mTOR hyperactivation have been identified as the most common cause of either lesional or non-lesional focal epilepsy. However, the precise mechanisms by which DEPDC5 loss-of-function triggers neuronal and network hyperexcitability are still unclear.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release.

View Article and Find Full Text PDF

Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the LRRK2 gene are linked to familial Parkinson's disease, with the protein having important interaction domains at both its ends.
  • This study used microscopy and assays to find that the N- and C-terminal domains of LRRK2 affect synaptic vesicle movement in opposing ways and bind to different proteins.
  • The G2385R variant in the C-terminal domain increases Parkinson's risk by altering protein interactions and synaptic vesicle fusion, potentially leading to impaired vesicular trafficking and disease progression.
View Article and Find Full Text PDF

RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral characterization of the Gdi1-null mouse revealed alterations in the total number/distribution of hippocampal and cortical synaptic vesicles as well as hippocampal short-term synaptic plasticity, and memory deficits.

View Article and Find Full Text PDF

Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice.

View Article and Find Full Text PDF
Article Synopsis
  • Heterozygous mutations in PRRT2 are linked to disorders like epilepsy, kinesigenic dyskinesia, and migraines, primarily due to reduced PRRT2 expression.
  • PRRT2 is found at presynaptic terminals, and its silencing causes fewer synapses and more docked synaptic vesicles, disrupting normal neurotransmitter release.
  • PRRT2 is crucial for the final stages of neurotransmitter release by interacting with key synaptic proteins and influencing calcium sensitivity and release probability.
View Article and Find Full Text PDF

Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function.

View Article and Find Full Text PDF

Background: Lrrk2, a gene linked to Parkinson's disease, encodes a large scaffolding protein with kinase and GTPase activities implicated in vesicle and cytoskeletal-related processes. At the presynaptic site, LRRK2 associates with synaptic vesicles through interaction with a panel of presynaptic proteins.

Results: Here, we show that LRRK2 kinase activity influences the dynamics of synaptic vesicle fusion.

View Article and Find Full Text PDF

Synapsins (Syns) are synaptic vesicle-associated phosphoproteins involved in neuronal development and neurotransmitter release. While Syns are implicated in the regulation of brain-derived neurotrophic factor (BDNF)-induced neurotransmitter release, their role in the BDNF developmental effects has not been fully elucidated. By using primary cortical neurons from Syn I knockout (KO) and Syn I/II/III KO mice, we studied the effects of BDNF and nerve growth factor (NGF) on axonal growth.

View Article and Find Full Text PDF