In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities.
View Article and Find Full Text PDFClonidine is an anti-hypertensive drug that inhibits the release of norepinephrine from pre-synaptic terminals binding to pre-synaptic α-adrenoreceptors. Some studies suggest that this drug decreases brain energy expenditure, particularly in hypoxic-ischemic injury. However, data about clonidine effects on the functional parameters regulating brain energy metabolism are lacking.
View Article and Find Full Text PDFEnergy metabolism is fundamental to maintain Central Nervous System homeostasis because of high requirement of adenosine triphosphate (ATP), that is necessary to sustain neuronal events. During aging, changes in brain bioenergetics may influence the recovery of cerebral tissue in coping with pathophysiological conditions and pharmacological treatments. For this reason, we have previously studied enzyme catalytic activities related to energy-yielding systems.
View Article and Find Full Text PDFGlutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post-ischemic recovery after 1, 24, 48, 72, and 96 h in 1-year-old adult and 2-year-old aged rats.
View Article and Find Full Text PDFAlterations in mitochondrial functions have been hypothesized to participate in the pathogenesis of depression, because brain bioenergetic abnormalities have been detected in depressed patients by neuroimaging in vivo studies. However, this hypothesis is not clearly demonstrated in experimental studies: some suggest that antidepressants are inhibitors of mitochondrial metabolism, while others observe the opposite. In this study, the effects of 21-day treatment with desipramine (15 mg/kg) and fluoxetine (10 mg/kg) were examined on the energy metabolism of rat hippocampus, evaluating the catalytic activity of regulatory enzymes of mitochondrial energy-yielding metabolic pathways.
View Article and Find Full Text PDFBrain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed.
View Article and Find Full Text PDFSynaptic energy state and mitochondrial dysfunction are crucial factors in many brain pathologies. l-acetylcarnitine, a natural derivative of carnitine, improves brain energy metabolism, and has been proposed for the Therapy of many neurological and psychiatric diseases. The effects of the drug on the maximum rate (Vmax) of enzymatic activities related to hippocampal synaptic energy utilization were evaluated, in the perspective of its employment for Dementias and Depression Therapy.
View Article and Find Full Text PDFFunctional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the cerebellar cortex of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from the glutamatergic mossy fibre endings which make synaptic contact with the granule cells of the granular layer, and the "small" synaptosomes, derived from the pre-synaptic terminals of granule cells making synaptic contact with the dendrites of Purkinje cells, were isolated by a combined differential/gradient centrifugation technique. Because most brain disorders are associated with bioenergetic changes, the maximum rate (Vmax) of selected enzymes of glycolysis, Krebs' cycle, glutamate and amino acids metabolism, and acetylcholine catabolism were evaluated.
View Article and Find Full Text PDFThe effect of aging on hippocampus is often confounded by diseases that commonly occur in the elderly. In this research, functional proteomics was used to characterize age-related changes in energy metabolism of different neuronal pathways within the hippocampus of Wistar rats aged 2, 6, 12, 18, and 24 months. The "large" synaptosomes, derived from glutamatergic mossy fiber endings connecting granule cells of dentate gyrus with apical dendrites of CA3 pyramidal cells, and the "small" synaptosomes, derived from the cholinergic small nerve endings of septo-hippocampal fibers, whose projections reach CA1 pyramidal cells, were isolated.
View Article and Find Full Text PDFStroke is a leading cause of death and disability, but most of the therapeutic approaches failed in clinical trials. The energy metabolism alterations, due to marked ATP decline, are strongly related to stroke and, at present, their physiopathological roles are not fully understood. Thus, the aim of this study was to evaluate the effects of aging on ischemia-induced changes in energy mitochondrial transduction and the consequences on overall brain energy metabolism in an in vivo experimental model of complete cerebral ischemia of 15min duration and during post-ischemic recirculation after 1, 24, 48, 72 and 96h, in 1year "adult" and 2year-old "aged" rats.
View Article and Find Full Text PDFThe effect of aging and CDP-choline treatment (20 mg kg⁻¹ body weight i.p. for 28 days) on the maximal rates (V(max)) of representative mitochondrial enzyme activities related to Krebs' cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate-oxaloacetate- and glutamate-pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic "light" and "heavy" mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months.
View Article and Find Full Text PDFThe maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na(+), K(+), Mg(2+)-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg(2+)-ATPase); sodium-potassium adenosine triphosphatase (Na(+), K(+)-ATPase); direct magnesium adenosine triphosphatase (Mg(2+)-ATPase); calcium-magnesium adenosine triphosphatase (Ca(2+), Mg(2+)-ATPase); and acetylcholinesterase. The results showed that Na(+), K(+)-ATPase decreased at 18 and 24 months, Ca(2+), Mg(2+)-ATPase and acetylcholinesterase decreased from 6 months, while Mg(2+)-ATPase was unmodified.
View Article and Find Full Text PDFThe maximum rates (V (max)) of some enzymatic activities related to energy consumption (ATP-ases) were evaluated in two types of synaptic plasma membranes (SPM) isolated from cerebral cortex of rats subjected to in vivo treatment with L: -acetylcarnitine at two different doses (30 and 60 mg kg(-1) i.p., 28 days, 5 days/week).
View Article and Find Full Text PDFThe effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e.
View Article and Find Full Text PDFCoenzyme Q distribution, as well as respiratory chain features, in rat brain mitochondria depend on mitochondrial subpopulation, brain region and age. Heavy mitochondria (HM) usually display the lowest content of respiratory components and the lowest enzymatic activities and it has been suggested that they represent the oldest mitochondrial population. In this study, we confirmed that HM are considerably compromised in their structure.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2002
The catalytic properties of energy-utilizing ATPases enzyme systems related to ions homeostasis were evaluated in different types of synaptic plasma membranes (SPM) and in somatic plasma membranes (SM) from cerebral cortex of rats aged 5, 10, and 22 months. The following enzymes were evaluated: Na+, K+-ATPase, Ca2+, Mg2+-ATPase, Mg2+-ATPase and the activity of acetylcholine esterase (AChE) was also evaluated. The ATPases located on SM and SPM and synaptic vesicles are involved in the regulation of presynaptic nerve ending homeostasis and postsynaptic activities.
View Article and Find Full Text PDF