Publications by authors named "Antonella Giuri"

Formamidinium lead iodide (FAPI) represents the most promising perovskite for single junction solar cells, exhibiting an impressive performance when deposited in a controlled nitrogen environment. In order to foster the real-world application of this technology, the deposition of FAPI in ambient air is a highly desirable prospect, as it would reduce fabrication costs. This study demonstrates that the wettability of FAPI precursors on the hole transporting layers (HTL) used to fabricate inverted -- solar cells is extremely poor in ambient air, hampering the realization of a perovskite active layer with good optoelectronic quality.

View Article and Find Full Text PDF

In order to move towards large-scale fabrication, perovskite solar cells need to detach themselves from strictly controlled environmental conditions and, to this end, fabrication in ambient air is highly desirable. Formamidinium iodide perovskite (FAPI) is one of the most promising perovskites but is also unstable at room temperature, which may make the ambient air deposition more difficult. Herein, we investigated different formulations of pure FAPI for the fabrication of perovskite solar cells (PSCs) in air.

View Article and Find Full Text PDF

Challenges to upscaling metal halide perovskites (MHPs) include mechanical film stresses that accelerate degradation, dominate at the module scale, and can lead to delamination or fracture. In this work, we demonstrate open-air blade coating of single-step coated perovskite as a scalable method to control residual film stress after processing and introduce beneficial compression in the thin film with the use of polymer additives such as gellan gum and corn starch. The optoelectronic properties of MHP films with compression are improved with higher photoluminescence yields.

View Article and Find Full Text PDF

In the field of bioelectronics, the demand for biocompatible, stable, and electroactive materials for functional biological interfaces, sensors, and stimulators, is drastically increasing. Conductive polymers (CPs) are synthetic materials, which are gaining increasing interest mainly due to their outstanding electrical, chemical, mechanical, and optical properties. Since its discovery in the late 1980s, the CP Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) has become extremely attractive, being considered as one of the most capable organic electrode materials for several bioelectronic applications in the field of tissue engineering and regenerative medicine.

View Article and Find Full Text PDF

Hybrid organic-inorganic perovskites (PVKs) are among the most promising materials for optoelectronic applications thanks to their outstanding photophysical properties and easy synthesis. Herein, a new PVK-based thermochromic composite is demonstrated. It can reversibly switch from a transparent state (transmittance > 80%) at room temperature to a colored state (transmittance < 10%) at high temperature, with very fast kinetics, taking only a few seconds to go from the bleached to the colored state (and vice versa).

View Article and Find Full Text PDF

Among conductive polymers, poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) has been widely used as an electrode material for supercapacitors, solar cells, sensors, etc. Although PEDOT:PSS-based thin films have acceptable properties such as good capacitive and electrical behaviour and biocompatibility, there are still several challenges to be overcome in their use as an electrode material for supercapacitors. For this reason, the aim of this work is to fabricate and characterise ternary nanocomposites based on PEDOT:PSS and graphene oxide (GO), blended with green additives (glucose (G) or ascorbic acid (AA)), which have the benefits of being environmentally friendly, economical, and easy to use.

View Article and Find Full Text PDF

Herein, we focus on improving the long-term chemical and thermomechanical stability of perovskite solar cells (PSCs), two major challenges currently limiting their commercial deployment. Our strategy incorporates a long-chain starch polymer into the perovskite precursor. The starch polymer confers multiple beneficial effects by forming hydrogen bonds with the methylammonium iodide precursor, templating perovskite growth that results in a compact and homogeneous film deposited in a simple one-step coating (antisolvent-free).

View Article and Find Full Text PDF

The industrialization of perovskite solar cells relies on solving intrinsic-to-material issues. To reach record efficiencies perovskite deposition needs to be finely adjusted by multi-step processes, in a humidity free glove-box environment and by means of hardly scalable techniques often associated with toxic solvents and anti-solvent dripping/bath. Herein, the use of polymeric material is proposed to deposit perovskite layers with easy processability.

View Article and Find Full Text PDF

The use of polymeric additives supporting the growth of hybrid halide perovskites has proven to be a successful approach aiming at high quality active layers targeting optoelectronic exploitation. A detailed description of the complex process involving the self-assembly of the precursors into the perovskite crystallites in presence of the polymer is, however, still missing. Here we take starch:CHNHPbI (MAPbI) as example of highly performing composite, both in solar cells and light emitting diodes, and study the film formation process through differential scanning calorimetry and in situ time-resolved grazing incidence wide-angle x-ray scattering, performed during spin coating.

View Article and Find Full Text PDF

In this study, an original and green procedure to produce water-based solutions containing nanometric recycled carbon particles is proposed. The nanometric particles are obtained starting from carbon waste ashes, produced by the wooden biomass pyro-gasification plant CMD (Costruzioni motori diesel) ECO20. The latter is an integrated system combining a downdraft gasifier, a spark-ignition internal combustion engine, an electric generator and syngas cleaning devices, and it can produce electric and thermal power up to 20 kWe and 40 kWth.

View Article and Find Full Text PDF

The aim of this work is the development and characterization of biodegradable thermoplastic recycled carbon ashes/maize starch (TPAS) composite films for agricultural applications. A proper plasticizer, that is, glycerol, was added to a commercial maize starch in an amount of 35 wt.%.

View Article and Find Full Text PDF

The performances of organometallic halide perovskite-based solar cells severely depend on the device architecture and the interface between each layer included in the device stack. In particular, the interface between the charge transporting layer and the perovskite film is crucial, since it represents both the substrate where the perovskite polycrystalline film grows, thus directly influencing the active layer morphology, and an important site for electrical charge extraction and/or recombination. Here, we focus on engineering the interface between a perovskite-polymer nanocomposite, recently developed by our group, and different commonly employed polymeric hole transporters, namely PEDOT: PSS [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)], PEDOT, PTAA [poly(bis 4-phenyl}{2,4,6-trimethylphenyl}amine)], Poly-TPD [Poly(,'-bis(4-butylphenyl)-,'-bis(phenyl)-benzidine] Poly-TPD, in inverted planar perovskite solar cell architecture.

View Article and Find Full Text PDF

Sources of single photons are a fundamental brick in the development of quantum information technologies. Great efforts have been made so far in the realization of reliable, highly efficient, and on demand quantum sources that could show an easy integration with quantum devices. This has recently culminated in the use of solid state quantum dots as promising candidates for future sources of quantum technologies.

View Article and Find Full Text PDF

In this study, two different fillers were prepared from carbon-based ashes, produced from the wooden biomass of a pyro-gasification plant, and starting from lignocellulosic waste. The first type was obtained by dry ball-milling (DBA), while the second one was prepared by oxidation in HO of the dry ball-milled ashes (oDBA). The characterization of the fillers included wide-angle x-ray diffraction (WAXD), thermogravimetric, and Fourier-transform infrared spectroscopy (FTIR) analysis.

View Article and Find Full Text PDF

The high efficiencies (>22%) reached by perovskite-based optoelectronic devices in a very short period, demonstrates the great potential and tunability of this material. The current challenge lies in translating such efficiencies to commercially feasible forms produced through industrial fabrication methods. Herein, a novel first step towards the processability of starch-perovskite inks, developed in our previous work, is investigated, by using inkjet printing technology.

View Article and Find Full Text PDF

Herein, an insulating biopolymer is exploited to guide the controlled formation of micro/nano-structure and physical confinement of α-δ mixed phase crystalline grains of formamidinium lead iodide (FAPbI) perovskite, functioning as charge carrier concentrators and ensuring improved radiative recombination and photoluminescence quantum yield (PLQY). This composite material is used to build highly efficient near-infrared (NIR) FAPbI Perovskite light-emitting diodes (PeLEDs) that exhibit a high radiance of 206.7 W/sr*m, among the highest reported for NIR-PeLEDs, obtained at a very high current density of 1000 mA/cm, while importantly avoiding the efficiency roll-off effect.

View Article and Find Full Text PDF

The present work is focused on the design of a bioactive chitosan-based scaffold functionalized with organic and inorganic signals to provide the biochemical cues for promoting stem cell osteogenic commitment. The first approach is based on the use of a sequence of 20 amino acids corresponding to a 68-87 sequence in knuckle epitope of BMP-2 that was coupled covalently to the carboxyl group of chitosan scaffold. Meanwhile, the second approach is based on the biomimetic treatment, which allows the formation of hydroxyapatite nuclei on the scaffold surface.

View Article and Find Full Text PDF

This article compares the catalytic activities of oxidized carbon black (oCB) and graphene oxide (eGO) samples on the kinetics of a reaction of diglycidyl ether of bisphenol A (DGEBA) with a diamine, leading to crosslinked insoluble networks. The study is mainly conducted by rheometry and Differential Scanning Calorimetry (DSC). Following the same oxidation procedure, CB samples are more efficiently oxidized than graphite samples.

View Article and Find Full Text PDF

In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually.

View Article and Find Full Text PDF

In this study, a new foaming method, based on physical foaming combined with microwave-induced curing, is proposed in combination with a surface bioactivation to develop scaffold for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (Pluronic) as blowing agent of a homogeneous blend of Chitosan and polyethylene glycol diacrylate (PEGDA700) solutions. In the second step, the porous structure of the foaming was chemically stabilized by radical polymerization induced by homogeneous heating of the sample in a microwave reactor.

View Article and Find Full Text PDF

Physical foaming combined with microwave-induced curing was used in this study to develop an innovative device for bone tissue regeneration. In the first step of the process, a stable physical foaming was induced using a surfactant (i.e.

View Article and Find Full Text PDF

In this work, a mixture of a sodium salt of carboxymethylcellulose (CMCNa) and polyethylene glycol diacrylate (PEGDA700) was used for the preparation of a microporous structure by using the combination of two different procedures. First, physical foaming was induced using Pluronic as a blowing agent, followed by a chemical stabilization. This second step was carried out by means of an azobis(2-methylpropionamidine)dihydrochloride as the thermoinitiator (TI).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: