Publications by authors named "Antonella Fiorillo"

Indoor air quality in hospital operating rooms is of great concern for the prevention of surgical site infections (SSI). A wide range of relevant medical and engineering literature has shown that the reduction in air contamination can be achieved by introducing a more efficient set of controls of HVAC systems and exploiting alarms and monitoring systems that allow having a clear report of the internal air status level. In this paper, an operating room air quality monitoring system based on a fuzzy decision support system has been proposed in order to help hospital staff responsible to guarantee a safe environment.

View Article and Find Full Text PDF

Squamous cell carcinoma represents the most common cancer affecting the oral cavity. At the University of Naples "Federico II", two different antibiotic protocols were used in patients undergoing oral mucosa cancer surgery from 2006 to 2018. From 2011, there was a shift; the combination of Cefazolin plus Clindamycin as a postoperative prophylactic protocol was chosen.

View Article and Find Full Text PDF

Background: The Health Technology Assessment (HTA) is used to evaluate health services, manage healthcare processes more efficiently, and compare medical technologies. The aim of this paper is to carry out an HTA study that compares two pharmacological therapies and provides the clinicians with two models to predict the length of hospital stay (LOS) of patients undergoing oral cavity cancer surgery on the bone tissue.

Methods: The six Sigma method was used as a tool of HTA; it is a technique of quality management and process improvement that combines the use of statistics with a five-step procedure: "Define, Measure, Analyze, Improve, Control" referred to in the acronym DMAIC.

View Article and Find Full Text PDF

Coronary artery disease is one of the most prevalent chronic pathologies in the modern world, leading to the deaths of thousands of people, both in the United States and in Europe. This article reports the use of data mining techniques to analyse a population of 10,265 people who were evaluated by the Department of Advanced Biomedical Sciences for myocardial ischaemia. Overall, 22 features are extracted, and linear discriminant analysis is implemented twice through both the Knime analytics platform and R statistical programming language to classify patients as either normal or pathological.

View Article and Find Full Text PDF