Publications by authors named "Antonella Del-Corso"

A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a serious chronic disease with an alarmingly growing worldwide prevalence. Current treatment of T2DM mainly relies on drug combinations in order to control blood glucose levels and consequently prevent the onset of hyperglycaemia-related complications. The development of multiple-targeted drugs recently emerged as an attractive alternative to drug combinations for the treatment of complex diseases with multifactorial pathogenesis, such as T2DM.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM.

View Article and Find Full Text PDF

Reports concerning the beneficial effects of D-ribose administration in cardiovascular and muscle stressful conditions has led to suggestions for the use of ribose as an energizing food supplement for healthy people. However, this practice still presents too many critical issues, suggesting that caution is needed. In fact, there are many possible negative effects of this sugar that we believe are underestimated, if not neglected, by the literature supporting the presentation of the product to the market.

View Article and Find Full Text PDF

The inhibition of aldose reductase is considered as a strategy to counteract the onset of both diabetic complications, upon the block of glucose conversion in the polyol pathway, and inflammation, upon the block of 3-glutathionyl-4-hydroxynonenal reduction. To ameliorate the outcome of aldose reductase inhibition, minimizing the interference with the detoxifying role of the enzyme when acting on toxic aldehydes, "differential inhibitors", i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the inhibitory effects of epigallocatechin gallate on aldose reductase show a negative slope when graphed against inhibitor concentration.
  • A kinetic analysis was conducted using both classical and non-classical models to create meaningful rate equations for understanding the experimental results.
  • The findings suggest that a decreasing rate in relation to inhibitor concentration indicates incomplete inhibition, which is a clear sign of uncompetitive inhibition, particularly when the residual enzyme activity is low.
View Article and Find Full Text PDF

Aldose reductase, classified within the aldo-keto reductase family as AKR1B1, is an NADPH dependent enzyme that catalyzes the reduction of hydrophilic as well as hydrophobic aldehydes. AKR1B1 is the first enzyme of the so-called polyol pathway that allows the conversion of glucose into sorbitol, which in turn is oxidized to fructose by sorbitol dehydrogenase. The activation of the polyol pathway in hyperglycemic conditions is generally accepted as the event that is responsible for a series of long-term complications of diabetes such as retinopathy, cataract, nephropathy and neuropathy.

View Article and Find Full Text PDF

Diabetes mellitus (DM) represents a complex and multifactorial disease that causes metabolic disorders with acute and long-term serious complications. The onset of DM, with over 90% of cases of diabetes classified as type 2, implies several metabolic dysfunctions leading to consider DM a worldwide health problem. In this frame, protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) are two emerging targets involved in the development of type 2 diabetes mellitus (T2DM) and its chronic complications.

View Article and Find Full Text PDF

An in-depth study on the inhibitory mechanism on protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) enzymes, including analysis of the insulin signalling pathway, of phosphoeleganin, a marine-derived phosphorylated polyketide, was achieved. Phosphoeleganin was demonstrated to inhibit both enzymes, acting respectively as a pure non-competitive inhibitor of PTP1B and a mixed-type inhibitor of AR. In addition, in silico docking analyses to evaluate the interaction mode of phosphoeleganin with both enzymes were performed.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs.

View Article and Find Full Text PDF

Aldose reductase (AKR1B1), the first enzyme in the polyol pathway, is likely involved in the onset of diabetic complications. Differential inhibition of AKR1B1 has been proposed to counteract the damaging effects linked to the activity of the enzyme while preserving its detoxifying ability. Here, we show that epigallocatechin gallate (EGCG), one of the most representative catechins present in green tea, acts as a differential inhibitor of human recombinant AKR1B1.

View Article and Find Full Text PDF

One of the consequences of the increased level of oxidative stress that often characterizes the cancer cell environment is the abnormal generation of lipid peroxidation products, above all 4-hydroxynonenal. The contribution of this aldehyde to the pathogenesis of several diseases is well known. In this study, we characterized the ADF astrocytoma cell line both in terms of its pattern of enzymatic activities devoted to 4-hydroxynonenal removal and its resistance to oxidative stress induced by exposure to hydrogen peroxide.

View Article and Find Full Text PDF

The ability to catalyse a reaction acting on different substrates, known as "broad-specificity" or "multi-specificity", and to catalyse different reactions at the same active site ("promiscuity") are common features among the enzymes. These properties appear to go against the concept of extreme specificity of the catalytic action of enzymes and have been re-evaluated in terms of evolution and metabolic adaptation. This paper examines the potential usefulness of a differential inhibitory action in the study of the susceptibility to inhibition of multi-specific or promiscuous enzymes acting on different substrates.

View Article and Find Full Text PDF

Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis.

View Article and Find Full Text PDF

The recruitment of the furanosidic scaffold of ribose as the crucial step for nucleotides and then for nucleic acids synthesis is presented. Based on the view that the selection of molecules to be used for relevant metabolic purposes must favor structurally well-defined molecules, the inadequacy of ribose as a preferential precursor for nucleotides synthesis is discussed. The low reliability of ribose in its furanosidic hemiacetal form must have played ab initio against the choice of d-ribose for the generation of d-ribose-5-phosphate, the fundamental precursor of the ribose moiety of nucleotides.

View Article and Find Full Text PDF

The formation of the adduct between the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) and glutathione, which leads to the generation of 3-glutathionyl-4-hydroxynonane (GSHNE), is one of the main routes of HNE detoxification. The aldo-keto reductase AKR1B1 is involved in the reduction of the aldehydic group of both HNE and GSHNE. In the present study, the effect of chirality on the recognition by aldose reductase of HNE and GSHNE was evaluated.

View Article and Find Full Text PDF

Seven triterpenoid saponins were identified in methanolic extracts of seeds of the Zolfino bean landrace (Phaseolus vulgaris L.) by HPLC fractionation, revealing their ability to inhibit highly purified human recombinant aldose reductase (hAKR1B1). Six of these compounds were associated by MS analysis with the following saponins already reported in different Phaseolus vulgaris varieties: soyasaponin Ba (V), soyasaponin Bb, soyasaponin Bd (sandosaponin A), soyasaponin αg, 3-O-[R-l-rhamnopyranosyl(1 → 2)-α-d-glucopyranosyl(1 → 2)-α-d-glucuronopyranosyl]olean-12-en-22-oxo-3α,-24-diol, and soyasaponin βg.

View Article and Find Full Text PDF
Article Synopsis
  • * Compounds 1-17 were synthesized and tested for their ability to inhibit aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), key enzymes in the progression of type 2 DM.
  • * Compounds 12 and 16 showed strong inhibitory effects on both AR and PTP1B, indicating their potential as lead candidates for further development and optimization in diabetes treatment.
View Article and Find Full Text PDF

Aldose reductase (AKR1B1), the key enzyme of the polyol pathway, plays a crucial role in the development of long-term complications affecting diabetic patients. Nevertheless, the expedience of inhibiting this enzyme to treat diabetic complications has failed, due to the emergence of side effects from compounds under development. Actually AKR1B1 is a Janus-faced enzyme which, besides ruling the polyol pathway, takes part in the antioxidant defense mechanism of the body.

View Article and Find Full Text PDF

Introduction: While the evolutionary adaptation of enzymes to their own substrates is a well assessed and rationalized field, how molecules have been originally selected in order to initiate and assemble convenient metabolic pathways is a fascinating, but still debated argument.

Objectives: Aim of the present study is to give a rationale for the preferential selection of specific molecules to generate metabolic pathways.

Methods: The comparison of structural features of molecules, through an inductive methodological approach, offer a reading key to cautiously propose a determining factor for their metabolic recruitment.

View Article and Find Full Text PDF

Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation.

View Article and Find Full Text PDF

The attempt to evaluate the human carbonyl reductase 1 (CBR1) activity on 3-glutathionylated-4-hydroxyalkanals through the classical spectrophotometric assay, in which NADPH oxidation is monitored at 340 nm, failed. This was due to the ability of the enzyme to catalyze the reduction of the free aldehyde form and at the same time the oxidation of the hemiacetal structure of this class of substrates, thus leading to the occurrence of a disproportion reaction sustained by a redox recycle of the pyridine cofactor. Making use of glutathionylated alkanals devoid of the 4 hydroxyl group, and thus unable to structurally arrange into a cyclic hemiacetal form, the susceptibility to inhibition of CBR1 to polyphenols was tested.

View Article and Find Full Text PDF

Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu-AR) has been characterized.

View Article and Find Full Text PDF

The hyperactivity of aldose reductase (AR) on glucose in diabetic conditions or on glutathionyl-hydroxynonenal in oxidative stress conditions, the source of cell damage and inflammation, appear to be balanced by the detoxifying action exerted by the enzyme. This detoxification acts on cytotoxic hydrophobic aldehydes deriving from membrane peroxidative processes. This may contribute to the failure in drug development for humans to favorably intervene in diabetic complications and inflammation, despite the specificity and high efficiency of several available aldose reductase inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • - Organisms are experiencing heightened environmental stress due to climate change, leading to a common response of reduced body size, but the impact of extreme climate events on these adaptations and ecological interactions is not fully understood.
  • - A study examined how extreme desiccation affects the antioxidant defenses of a rocky intertidal gastropod, revealing that increased desiccation led to lower antioxidant levels and reduced growth and interaction strengths.
  • - Findings indicate that phenotypic plasticity, especially in body size reduction, helps organisms manage biochemical stress responses, highlighting the importance of understanding these linkages to predict broader ecological consequences of climate change.
View Article and Find Full Text PDF