Publications by authors named "Antonella Caruso"

Tuberculous meningitis (TBM) is a severe form of tuberculosis. We report the development of fatal TBM in a 2-year-old previously healthy child, suggesting that TBM must be evaluated in children of all ages with non-specific symptoms of central nervous involvement because a diagnostic delay induces a negative prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how a nutrition education program (NEP) affected Mediterranean diet (MD) adherence and inflammation in healthy adolescents, divided into groups based on their physical activity levels.
  • Over six months, participants showed improved adherence to the MD, with a significant increase in those scoring optimally on the KIDMED score.
  • Results indicated that NEP and higher vigorous physical activity independently increased diet adherence and positively influenced inflammatory markers, suggesting that promoting healthy lifestyle choices can enhance both nutrition and health outcomes in adolescents.
View Article and Find Full Text PDF

Cancer-associated Fibroblasts (CAFs), the principal components of tumor microenvironment, play multiple role in breast cancer progression. We have previously shown an oncosuppressive role of the nuclear Farnesoid X Receptor (FXR) in mammary epithelial cancer cells, here we assessed whether FXR activation may affect CAF tumor-promoting features. We showed that FXR is expressed in human CAFs isolated from four patients and treatment with the selective FXR agonist GW4064 decreased CAF migration, stress-fiber formation and contractility.

View Article and Find Full Text PDF

Objective: Recent clinical trials indicate that synthetic progestins may be unexpectedly relevant for the development of cardiovascular disease. The aim of this study was to establish whether nomegestrol acetate induces signaling events in human endothelial cells that differ from those of other progestins, such as natural progesterone or medroxyprogesterone acetate.

Methods: We used human endothelial cells to study the action of nomegestrol acetate (either alone or in the presence of estradiol [E2]) on the synthesis of nitric oxide (NO) and on the activity or expression of endothelial nitric oxide synthase (eNOS).

View Article and Find Full Text PDF

Objective: To investigate the effects of P, medroxyprogesterone acetate (MPA), and dydrogesterone (DYD) and its metabolite, 20-alpha-dihydrodydrogesterone (DHD) on endothelial synthesis of nitric oxide (NO) and characterize the signaling events recruited by these compounds. The Women's Health Initiative trial reports an excess of heart disease in postmenopausal women receiving MPA.

Design: Cell culture.

View Article and Find Full Text PDF

Sex steroids control cell movement and tissue organization; however, little is known of the involved mechanisms. This report describes the ongoing dynamic regulation by estrogen of the actin cytoskeleton and cell movement in human vascular endothelial cells that depends on rapid activation of the actin-regulatory protein moesin. Moesin activation is triggered by the interaction of the C-terminal portion of cell membrane estrogen receptor alpha with the G protein Galpha(13), leading to activation of the small GTPase RhoA and of the downstream effector Rho-associated kinase.

View Article and Find Full Text PDF

Unlabelled: While experimental evidence demonstrates that estrogen protects vascular cells, clinical trials on hormone replacement therapies (HRT) fail to report cardiovascular benefits. This discrepancy may indicate that estrogen signaling during HRT may not be fully effective in vascular cells, possibly due to the way of delivering estrogens to vascular tissues. We therefore, tested whether a different kinetics of exposure of endothelial cells to estrogens may alter the balance between transcriptional and non-transcriptional signaling.

View Article and Find Full Text PDF

Objective: The unexpected findings of the Women's Health Initiative trial, where surrogate cardiovascular risk markers have failed to predict the cardiovascular performance of hormone therapy, showing no reduction of cardiovascular disease in postmenopausal women receiving hormonal preparations inducing a favorable lipid profile, raise the interest on how molecules with hormone-like activity used for the treatment of menopausal symptoms act on vascular cells. This is particularly important for estrogen-like compounds such as phytoestrogens, whose mechanisms of action may significantly differ from those of other estrogenic compounds.

Design: Because endothelial-derived nitric oxide (NO) is a key regulator of vascular tone and atherogenesis as well as a well-characterized estrogen-regulated molecule, we studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in red clover extracts.

View Article and Find Full Text PDF

The conjugated equine estrogens-only arm of the Women's Health Initiative trial, showing a trend toward protection from heart disease as opposed to women receiving also medroxyprogesterone acetate (MPA), strengthens the debate on the cardiovascular effects of progestins. We compared the effects of progesterone (P) or MPA on the synthesis of nitric oxide and on the expression of leukocyte adhesion molecules, characterizing the signaling events recruited by these compounds. Although P significantly increases nitric oxide synthesis via transcriptional and nontranscriptional mechanisms, MPA is devoid of such effects.

View Article and Find Full Text PDF

After the unexpected findings of the Women's Health Initiative trial, indicating that traditional cardiovascular risk markers fail to predict the effects of hormone replacement therapy, it is of interest to characterize how steroids act on vascular cells. This is particularly important for tissue-specific drugs such as tibolone, whose actions may differ from other preparations. Because nitric oxide (NO) is a key regulator of vascular tone and atherogenesis, we studied its regulation by tibolone and its metabolites on human endothelial cells.

View Article and Find Full Text PDF

Estrogen receptors act via the regulation of transcriptional processes, involving nuclear translocation and binding on specific response elements, thus leading to regulation of target gene expression. However, novel non-transcriptional mechanisms of signal transduction through steroid hormone receptors have been identified. These so-called "non-genomic" effects are independent by gene transcription or protein synthesis and involve steroid-induced modulation of cytoplasmic or of cell membrane-bound regulatory proteins.

View Article and Find Full Text PDF

The impact of progesterone on the cardiovascular system is relevant, but not as well characterized as the effects of estrogens. The recent early interruption of the conjugated equine estrogens (CEE)-medroxyprogesterone acetate (MPA) arm of the Women's Health Initiative trial, but not of the parallel CEE-only treatment arm, suggesting the possibility of harmful cardiovascular effects of the progestins, boosts the debate on the role of progesterone and progestins on the vascular tree. The data available up to now show the presence of important regulatory effects of progestagens on vascular cells.

View Article and Find Full Text PDF

Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the major circulating steroid hormones in humans, and their levels progressively decline with age. Epidemiological studies suggest that DHEA/DHEAS concentrations may be inversely related to cardiovascular risk, but disagreement exists on this issue. Preliminary studies show that DHEA regulates vascular function, but few data have been published on the mechanisms.

View Article and Find Full Text PDF

Estrogen receptor (ER) signaling has been, for a long time, associated with transcriptional processes involving nuclear translocation and binding on specific response elements, leading to regulation of target gene expression. However, rapid, non-transcriptional mechanisms of signal transduction through steroid hormone receptors have been identified. These so-called 'non-genomic' effects are independent from gene transcription or protein synthesis and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins.

View Article and Find Full Text PDF