Objective: To report a case of direct oocytes retrieval for fertility preservation before oophorectomy by open surgery in a young patient with ovarian cancer.
Design: case report and literature review.
Setting: University hospital.
Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel.
View Article and Find Full Text PDFBackground: Cell-transplantation therapies have attracted attention as treatments for skeletal-muscle disorders; however, such research has been severely limited by poor cell survival. Tissue engineering offers a potential solution to this problem by providing biomaterial adjuvants that improve survival and engraftment of donor cells.
Methods: In this study, we investigated the use of intra-muscular transplantation of mesoangioblasts (vessel-associated progenitor cells), delivered with an injectable hydrogel biomaterial directly into the tibialis anterior (TA) muscle of acutely injured or dystrophic mice.
Human leukocyte antigen (HLA)-A2.1 transgenic mice (HHD) represent a valuable model to study and predict the immunogenicity of vaccines against pathogens. However, HHD mice are unsuitable for in vivo studies of cancer vaccines against human tumor-associated antigens because they lack T-cell tolerance that is key to define the potency of the treatment.
View Article and Find Full Text PDFPurpose: Oligodeoxynucleotides containing unmethylated CpG dinucleotides induce innate and adaptive immunity through Toll-like receptor 9 (TLR9). In the present study, we have examined the ability of a novel agonist of TLR9, called immunomodulatory oligonucleotide (IMO), to enhance effects of a HER-2/neu plasmid DNA electroporation/adenovirus (DNA-EP/Ad) vaccine.
Experimental Design: BALB/NeuT mice were treated with DNA-EP vaccine alone, IMO alone, or the combination of two agents starting at week 13, when all mice showed mammary neoplasia.
In vivo electroporation of plasmid DNA (DNA-EP) is an efficient and safe method for vaccines. It results in increased DNA uptake, enhances protein expression, and augments immune responses to the target antigen in a variety of species. To further improve the efficacy of DNA-EP, we evaluated small interfering RNA (siRNA) sequences targeting apoptotic genes as an adjuvant to cancer vaccine.
View Article and Find Full Text PDF