Due to the high number of doses required to achieve adequate coverage in the context of COVID-19 pandemics, there is a great need for novel vaccine developments. In this field, there have been research approaches that focused on the production of SARS-CoV-2 virus-like particles. These are promising vaccine candidates as their structure is similar to that of native virions but they lack the genome, constituting a biosafe alternative.
View Article and Find Full Text PDFSpike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes.
View Article and Find Full Text PDFHuman stem cell factor (hSCF) is an early-acting growth factor that promotes proliferation, differentiation, migration, and survival in several tissues. It plays a crucial role in hematopoiesis, gametogenesis, melanogenesis, intestinal motility, and in development and recovery of nervous and cardiovascular systems. Potential therapeutic applications comprise anemia treatment, mobilization of hematopoietic stem/progenitor cells to peripheral blood, and increasing gene transduction efficiency for gene therapy.
View Article and Find Full Text PDFSerology assays are essential tools to mitigate the effect of COVID-19, help to identify previous SARS-CoV-2 infections or vaccination, and provide data for surveillance and epidemiologic studies. In this study, we report the production and purification process of the receptor-binding domain (RBD) of SARS-CoV-2 in HEK293 cells, which allowed the design, optimization, and validation of an indirect ELISA (iELISA) for the detection of human anti-RBD antibodies. To find the optimal conditions of this iELISA, a multivariate strategy was performed throughout design of experiments (DoE) and response surface methodology (RSM), one of the main tools of quality by design (QbD) approach.
View Article and Find Full Text PDFAtomistic molecular dynamic simulations were performed to study the structure of isolated VBT-VBA (vinylbenzylthymine-vinylbenzyltriethylammonium chloride) copolymer chains in water at different monomeric species ratios (1:1 and 1:4). The geometric parameters of the structure that the copolymers form in equilibrium together with the basic interactions that stabilize them were determined. Atomic force microscopy (AFM) measurements of dried diluted concentrations of the two copolymers onto highly oriented pyrolytic graphite (HOPG) substrates were carried out to study their aggregation arrangement.
View Article and Find Full Text PDF