Development of novel pharmaceutical drug modalities has created a need for frozen storage and transportation. Accurate and easy assessment of container closure integrity (CCI) in frozen conditions remains a challenge. Thus, container closure systems (CCS) suitable for low temperatures have been primarily restricted to vials despite the growing popularity of prefillable syringes (PFS) for parenteral administration.
View Article and Find Full Text PDFThe development of methods ensuring reliable control over explosive chemical reactions is a critical task for the safe and efficient application of energetic materials. Triggering the explosion by laser radiation is one of the promising methods. In this work, we demonstrate a technique of applying the common industrial high explosive pentaerythritol tetranitrate (PETN) as a photosensitive energetic material by adding zinc oxide nanopowders doped with copper and iron.
View Article and Find Full Text PDFThe COVID-19 pandemic has generated growing interest in the development of mRNA-based vaccines and therapeutics. However, the size and properties of the lipid nanoparticles (LNPs) used to deliver the nucleic acids can lead to unique phenomena during manufacturing that are not typical of other biologics. The objective of this study was to develop a more fundamental understanding of the factors controlling the performance of sterile filtration of mRNA-LNPs.
View Article and Find Full Text PDFParticulate matter (PM) <10 μm in size represents an extremely heterogeneous and variable group of objects that can penetrate the human respiratory tract. The present study aimed to isolate samples of coarse and ultrafine PM at some distance from polluting industries (1−1.5 km from the border of open-cast mines).
View Article and Find Full Text PDFKnown applications of high energy density materials are impressively vast. Despite this, we argue that energetic materials are still underutilized for common energy purposes due to our inability to control explosive chemical reactions releasing energy from these materials. The situation appears paradoxical as energetic materials (EM) possess massive amounts of energy and, hence, should be most appropriate for applications in many energy-intensive processes.
View Article and Find Full Text PDFThe recent developments in material sciences and rational structural designs have advanced the field of compliant and deformable electronics systems. However, many of these systems are limited in either overall stretchability or areal coverage of functional components. Here, we design a construct inspired by Kirigami for highly deformable micro-supercapacitor patches with high areal coverages of electrode and electrolyte materials.
View Article and Find Full Text PDFOptical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al₂O₃-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C₅H₈N₄O12) and a wide band gap aluminum oxide (α-Al₂O₃) substrate. The first principles modeling is used to deconstruct and interpret the α-Al₂O₃-PETN absorption spectrum that has distinct peaks attributed to surface F⁰-centers and surface-PETN transitions. We predict the low energy α-Al₂O₃ F⁰-center-PETN transition, producing the excited triplet state, and α-Al₂O₃ F⁰-center-PETN charge transfer, generating the PETN anion radical.
View Article and Find Full Text PDFWe propose a fluctuation model of the photochemical initiation of an explosive chain reaction in energetic materials. In accordance with the developed model, density fluctuations of photo-excited molecules serve as reaction nucleation sites due to the stochastic character of interactions between photons and energetic molecules. A further development of the reaction is determined by a competition of two processes.
View Article and Find Full Text PDF