The aim of this paper was to design a repeated drug administration strategy to reach and maintain the requested drug concentration in the body. Conservative designs require an exact knowledge of pharmacokinetic parameters, which is considered an unrealistic demand. The problem is usually resolved using the trial-and-error open-loop approach; yet, this can be considered insufficient due to the parametric uncertainties as the dosing strategy may induce an undesired behavior of the drug concentrations.
View Article and Find Full Text PDFIn the first part of this paper, the problem of using an uncertain pharmacokinetic model is resolved to determine drug concentrations in rats after the oral administration of drug suspensions with and without added tenside. To this end, a generalized pharmacokinetic model determining the guaranteed limits of drug concentrations was designed. Based on this, the design of the so-called state-bounding observer is described in the second part.
View Article and Find Full Text PDFDepending on their concentrations the surface-active substances, tensides (surfactants) can positively or negatively influence the drug absorption, which is widely used in the design of the dosage forms with controlled release. A problem is that the (in-vivo) rate of absorption cannot be directly measured and for that reason, it is frequently substituted by evaluation of the (in-vitro) dissolution. On other hand, a suitably designed pharmacokinetic model can directly predict virtually all pharmacokinetic quantities including both the rate of absorption and fraction of the dose reaching the blood circulation.
View Article and Find Full Text PDFThe paper analyses influences of the temperature and hydrophilic groups on micellar properties of ionic surfactants with 12-carbonic hydrophobic chains. The aim is to assess the impact of hydrophilic groups and temperature on thermodynamic parameters and micellization. This knowledge is indispensable for the formulation of new dosage forms.
View Article and Find Full Text PDFIt is known that cationic surfactants have an antimicrobial effect and act as enhancers. This paper studies three cationic surfactants from the group of alkyldimethylbenzylammonium chlorides (dodecyl-, tetradecyl-, and hexadecyl). Interest is focused on the association of the surfactants with respect to temperature, partition balances and their influence on drug release, rheological properties, and the pH of hydrogels.
View Article and Find Full Text PDFEvaluation of in vitro-in vivo correlation (IVIVC) plays important role in securing therapeutic effect if a dosage form undergoes technological modifications. Similarity (closeness) of dissolution profiles of the original and modified dosage forms has been traditionally considered to be sufficient for similar in vivo responses. This may be true if the IVIVC model (dependence between the dissolution and corresponding absorption profiles) is given by a linear straight line with the unit slope.
View Article and Find Full Text PDF