Carbon-supported mono- and bimetallic catalysts prepared via incipient wetness impregnation were systematically studied in aqueous-phase reforming (APR) of xylitol aiming at hydrogen production from biomass. The catalytic performance of several VIII group metals and their combinations, such as Pt, Ni, Pt-Ni, Re, Pt-Re, Ru, Pt-Ru, and Pt-Co, was compared for xylitol APR in a fixed-bed reactor at 225 °C and 29.7 bar (N).
View Article and Find Full Text PDFSeveral mono- and bimetallic Pd, Pt, Rh and Ru supported on alumina and active carbon catalysts were characterized by CO chemisorption, nitrogen adsorption, XPS and XRD and acidity titrations were performed for active carbon supported catalysts. These catalysts were tested in oxidation of two sugars, namely lactose and rhamnose, at 60 °C and at 70 °C under slightly alkaline conditions (pH 8) with molecular oxygen. The results revealed that there is an optimum metal particle size in a range of 3-10 nm giving the highest initial TOFs for both oxidations.
View Article and Find Full Text PDFAqueous phase reforming of sorbitol over Pt supported on an alumina catalyst is investigated, in order to identify the intermediates involved in the transformation of the initial feed. Parameters such as the sorbitol feed rate and temperature are studied. To identify the intermediates, an approach based on analysis of the gas and liquid phases as well as the total carbon content was developed.
View Article and Find Full Text PDF