This paper concerns a detailed study of the phase separation and structure formation processes that occur in solutions of highly hydrophobic polylactic-co-glycolic acid (PLGA) in highly hydrophilic tetraglycol (TG) upon their contact with aqueous media. In the present work, cloud point methodology, high-speed video recording, differential scanning calorimetry, and both optical and scanning electron microscopy were used to analyze the behavior of PLGA/TG mixtures differing in composition when they are immersed in water (the so-called "harsh" antisolvent) or in a nonsolvent consisting of equal amounts of water and TG (a "soft" antisolvent). The phase diagram of the ternary PLGA/TG/water system was designed and constructed for the first time.
View Article and Find Full Text PDFGene therapy is one of the most promising approaches in regenerative medicine to restore damaged tissues of various types. However, the ability to control the dose of bioactive molecules in the injection site can be challenging. The combination of genetic constructs, bioresorbable material, and the 3D printing technique can help to overcome these difficulties and not only serve as a microenvironment for cell infiltration but also provide localized gene release in a more sustainable way to induce effective cell differentiation.
View Article and Find Full Text PDFWide application of chitosan in modern technologies is limited by the lack of reliable and low-cost techniques to prepare size-tuned constructs with a complex surface morphology, improved optical and mechanical properties. We report a new simple method for preparation of transparent thermoreversible chitosan alcogels from chitosan/HO/ethanol ternary systems. This method, termed "low temperature thermally induced phase separation under non-freezing conditions" (LT-TIPS-NF), fine tunes gelation by adjusting only temperature (from 5 to -25 °C) and varying the initial content of chitosan (from 0.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2021
Bioprinting emerges as a powerful flexible approach for tissue engineering with prospective capability to produce tissue on demand, including biomimetic hollow-core fiber structures. In spite of significance for tissue engineering, hollow-core structures proved difficult to fabricate, with the existing methods limited to multistage, time-consuming, and cumbersome procedures. Here, we report a versatile cell-friendly photopolymerization approach that enables single-step prototyping of hollow-core as well as solid-core hydrogel fibers initially loaded with living cells.
View Article and Find Full Text PDFIn this study, we prepared hydrogel scaffolds for tissue engineering by computer-assisted extrusion three-dimensional (3D) printing with photocured (λ = 445 nm) hyaluronic acid glycidyl methacrylate (HAGM). The developed product was compared with the polylactic--glycolic acid (PLGA) scaffolds generated by means of the original antisolvent 3D printing methodology. The cytotoxicity and cytocompatibility of the scaffolds were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests, flow cytometry, and scanning electron microscopy.
View Article and Find Full Text PDFThe aim of the study was the development of three-dimensional (3D) printed gene-activated implants based on octacalcium phosphate (OCP) and plasmid DNA encoding . The first objective of the present work involved design and fabrication of gene-activated bone substitutes based on the OCP and plasmid DNA with gene using 3D printing approach of ceramic constructs, providing the control of its architectonics compliance to the initial digital models. X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and compressive strength analyses were applied to investigate the chemical composition, microstructure, and mechanical properties of the experimental samples.
View Article and Find Full Text PDFWe demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy.
View Article and Find Full Text PDFWe proposed a novel method of generation of bioresorbable polymeric scaffolds with specified architectonics for tissue engineering using extrusion three-dimensional (3D) printing with solutions of polylactoglycolide in tetraglycol with their subsequent solidifying in aqueous medium. On the basis of 3D computer models, we obtained the matrix structures with interconnected system of pores ranging in size from 0.5 to 500 µm.
View Article and Find Full Text PDFBiocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes.
View Article and Find Full Text PDF