Publications by authors named "Anton Sheinin"

Traumatic brain injury manifests itself in various forms, ranging from mild impairment of consciousness to severe coma and death. Traumatic brain injury remains one of the leading causes of morbidity and mortality. Currently, there is no therapy to reverse the effects associated with traumatic brain injury.

View Article and Find Full Text PDF

Refractoriness is a fundamental property of excitable elements, such as neurons, indicating the probability for re-excitation in a given time lag, and is typically linked to the neuronal hyperpolarization following an evoked spike. Here we measured the refractory periods (RPs) in neuronal cultures and observed that an average anisotropic absolute RP could exceed 10 ms and its tail is 20 ms, independent of a large stimulation frequency range. It is an order of magnitude longer than anticipated and comparable with the decaying membrane potential time scale.

View Article and Find Full Text PDF

Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how electrical activity affects the structure of neurons, specifically looking at the cytoskeleton, which gives neurons their shape.
  • They used high-resolution electron microscopy to observe changes in the sciatic nerve of mice after applying different frequencies of electric pulses.
  • The results showed that neuronal stimulation significantly reduced the density of key cytoskeletal proteins, suggesting that this chemical change may help facilitate neuronal function and shape in response to electrical signals.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction, deterioration of neuronal transmission, and consequently neuronal death. Although there is no treatment for AD, exposure to enriched environment (EE) in mice, as well as physical and mental activity in human subjects have been shown to have a protective effect by slowing the disease's progression and reducing AD-like cognitive impairment. However, the molecular mechanism of this mitigating effect is still not understood.

View Article and Find Full Text PDF

During hundreds of millions of years of evolution, insects have evolved some of the most efficient and robust sensing organs, often far more sensitive than their man-made equivalents. In this study, we demonstrate a hybrid bio-technological approach, integrating a locust tympanic ear with a robotic platform. Using an Ear-on-a-Chip method, we manage to create a long-lasting miniature sensory device that operates as part of a bio-hybrid robot.

View Article and Find Full Text PDF

Individuals with spinal cord injury (SCI) usually suffer from permanent neurological deficits, while spontaneous recovery and therapeutic efficacy are limited. Here, we demonstrate that when given intranasally, exosomes derived from mesenchymal stem cells (MSC-Exo) could pass the blood brain barrier and migrate to the injured spinal cord area. Furthermore, MSC-Exo loaded with phosphatase and tensin homolog small interfering RNA (ExoPTEN) could attenuate the expression of PTEN in the injured spinal cord region following intranasal administrations.

View Article and Find Full Text PDF

Importins mediate transport from synapse to soma and from cytoplasm to nucleus, suggesting that perturbation of importin-dependent pathways should have significant neuronal consequences. A behavioral screen on five importin α knockout lines revealed that reduced expression of importin α5 (KPNA1) in hippocampal neurons specifically decreases anxiety in mice. Re-expression of importin α5 in ventral hippocampus of knockout animals increased anxiety behaviors to wild-type levels.

View Article and Find Full Text PDF

Physical models typically assume time-independent interactions, whereas neural networks and machine learning incorporate interactions that function as adjustable parameters. Here we demonstrate a new type of abundant cooperative nonlinear dynamics where learning is attributed solely to the nodes, instead of the network links which their number is significantly larger. The nodal, neuronal, fast adaptation follows its relative anisotropic (dendritic) input timings, as indicated experimentally, similarly to the slow learning mechanism currently attributed to the links, synapses.

View Article and Find Full Text PDF

Neurons are the computational elements that compose the brain and their fundamental principles of activity are known for decades. According to the long-lasting computational scheme, each neuron sums the incoming electrical signals via its dendrites and when the membrane potential reaches a certain threshold the neuron typically generates a spike to its axon. Here we present three types of experiments, using neuronal cultures, indicating that each neuron functions as a collection of independent threshold units.

View Article and Find Full Text PDF

Spinal cord injury (SCI), involving damaged axons and glial scar tissue, often culminates in irreversible impairments. Achieving substantial recovery following complete spinal cord transection remains an unmet challenge. Here, we report of implantation of an engineered 3D construct embedded with human oral mucosa stem cells (hOMSC) induced to secrete neuroprotective, immunomodulatory, and axonal elongation-associated factors, in a complete spinal cord transection rat model.

View Article and Find Full Text PDF

The exact function of the polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin 1A (Syx), in vesicle exocytosis, although widely studied, is currently not clear. Here, we addressed the role of 5RK in Ca-triggered release, using our Syx-based intramolecular fluorescence resonance energy transfer (FRET) probe, which previously allowed us to resolve a depolarization-induced Ca-dependent close-to-open transition (CDO) of Syx that occurs concomitant with evoked release, both in PC12 cells and hippocampal neurons and was abolished upon charge neutralization of 5RK. First, using dynamic FRET analysis in PC12 cells, we show that CDO occurs following assembly of SNARE complexes that include the vesicular SNARE, synaptobrevin 2, and that the participation of 5RK in CDO goes beyond its participation in the final zippering of the complex, because mutations of residues adjacent to 5RK, believed to be crucial for final zippering, do not abolish this transition.

View Article and Find Full Text PDF

The increasing number of recording electrodes enhances the capability of capturing the network's cooperative activity, however, using too many monitors might alter the properties of the measured neural network and induce noise. Using a technique that merges simultaneous multi-patch-clamp and multi-electrode array recordings of neural networks in-vitro, we show that the membrane potential of a single neuron is a reliable and super-sensitive probe for monitoring such cooperative activities and their detailed rhythms. Specifically, the membrane potential and the spiking activity of a single neuron are either highly correlated or highly anti-correlated with the time-dependent macroscopic activity of the entire network.

View Article and Find Full Text PDF

Memory deficit is a common manifestation of age-related cognitive impairment, of which depression is a frequently occurring comorbidity. Previously, we developed a submissive (Sub) mouse line, validated as a model of depressive-like behavior. Using learning paradigms testing hippocampus-dependent spatial and nonspatial memory, we demonstrate here that Sub mice developed cognitive impairments at earlier age (3 months), compared with wild-type mice.

View Article and Find Full Text PDF

Background: Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment.

View Article and Find Full Text PDF

Alterations in the levels of synaptic proteins affect synaptic transmission and synaptic plasticity. However, the precise effects on neuronal network activity are still enigmatic. Here, we utilized microelectrode array (MEA) to elucidate how manipulation of the presynaptic release process affects the activity of neuronal networks.

View Article and Find Full Text PDF

Tomosyn, a syntaxin-binding protein, is known to inhibit vesicle priming and synaptic transmission via interference with the formation of SNARE complexes. Using a lentiviral vector, we specifically overexpressed tomosyn1 in hippocampal dentate gyrus neurons in adult mice. Mice were then subjected to spatial learning and memory tasks and electrophysiological measurements from hippocampal slices.

View Article and Find Full Text PDF

Regulation of exocytosis by voltage-gated K(+) channels has classically been viewed as inhibition mediated by K(+) fluxes. We recently identified a new role for Kv2.1 in facilitating vesicle release from neuroendocrine cells, which is independent of K(+) flux.

View Article and Find Full Text PDF

Background: The absence of a suitable cellular model is a major obstacle for the study of peripheral neuropathies. Human embryonic stem cells hold the potential to be differentiated into peripheral neurons which makes them a suitable candidate for this purpose. However, so far the potential of hESC to differentiate into derivatives of the peripheral nervous system (PNS) was not investigated enough and in particular, the few trials conducted resulted in low yields of PNS neurons.

View Article and Find Full Text PDF

Endocannabinoids released from the postsynaptic neuronal membrane can activate presynaptic CB1 receptors and inhibit neurotransmitter release. In hippocampal slices, depolarization of the CA1 pyramidal neurons elicits an endocannabinoid-mediated inhibition of gamma-aminobutyric acid release known as depolarization-induced suppression of inhibition (DSI). Using the highly reduced neuron/synaptic bouton preparation from the CA1 region of hippocampus, we have begun to examine endocannabinoid-dependent short-term depression (STD) of inhibitory synaptic transmission under well-controlled physiological and pharmacological conditions in an environment free of other cells.

View Article and Find Full Text PDF

Ca2+ regulates multiple processes in nerve terminals, including synaptic vesicle recruitment, priming, and fusion. Munc13s, the mammalian homologs of Caenorhabditis elegans Unc13, are essential vesicle-priming proteins and contain multiple regulatory domains that bind second messengers such as diacylglycerol and Ca2+/calmodulin (Ca2+/CaM). Binding of Ca2+/CaM is necessary for the regulatory effect that allows Munc13-1 and ubMunc13-2 to promote short-term synaptic plasticity.

View Article and Find Full Text PDF

Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it could influence hormone release.

View Article and Find Full Text PDF

The M-type K(+) current (M-current), encoded by Kv7.2/3 (KCNQ2/3) K(+) channels, plays a critical role in regulating neuronal excitability because it counteracts subthreshold depolarizations. Here we have characterized the functions of pre- and postsynaptic M-channels using a novel Kv7.

View Article and Find Full Text PDF

The neuroprotective compound, 1-aminocyclopropanecarboxylic acid (ACPC), has been reported to act on the N-methyl-D-aspartate (NMDA) receptors simultaneously as a glycine binding site agonist and a glutamate binding site competitive antagonist. The complex kinetics of NMDA current changes measured by a whole-cell voltage clamp in rat hippocampal neurons resulting from application and removal of 1 mM ACPC in the continual presence of 15 microM NMDA confirm this hypothesis. Two-electrode voltage clamp on Xenopus oocytes expressing NR1-1a and either NR2A, NR2B or NR2C subunits yielded biphasic ACPC dose response curves with 15 microM NMDA.

View Article and Find Full Text PDF