Publications by authors named "Anton Schwaighofer"

Timely detection of Barrett's esophagus, the pre-malignant condition of esophageal adenocarcinoma, can improve patient survival rates. The Cytosponge-TFF3 test, a non-endoscopic minimally invasive procedure, has been used for diagnosing intestinal metaplasia in Barrett's. However, it depends on pathologist's assessment of two slides stained with H&E and the immunohistochemical biomarker TFF3.

View Article and Find Full Text PDF

Imperfections in data annotation, known as label noise, are detrimental to the training of machine learning models and have a confounding effect on the assessment of model performance. Nevertheless, employing experts to remove label noise by fully re-annotating large datasets is infeasible in resource-constrained settings, such as healthcare. This work advocates for a data-driven approach to prioritising samples for re-annotation-which we term "active label cleaning".

View Article and Find Full Text PDF

Importance: Personalized radiotherapy planning depends on high-quality delineation of target tumors and surrounding organs at risk (OARs). This process puts additional time burdens on oncologists and introduces variability among both experts and institutions.

Objective: To explore clinically acceptable autocontouring solutions that can be integrated into existing workflows and used in different domains of radiotherapy.

View Article and Find Full Text PDF

A large number of different machine learning methods can potentially be used for ligand-based virtual screening. In our contribution, we focus on three specific nonlinear methods, namely support vector regression, Gaussian process models, and decision trees. For each of these methods, we provide a short and intuitive introduction.

View Article and Find Full Text PDF

Metabolic stability is an important property of drug molecules that should-optimally-be taken into account early on in the drug design process. Along with numerous medium- or high-throughput assays being implemented in early drug discovery, a prediction tool for this property could be of high value. However, metabolic stability is inherently difficult to predict, and no commercial tools are available for this purpose.

View Article and Find Full Text PDF

We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model.

View Article and Find Full Text PDF

Unfavorable lipophilicity and water solubility cause many drug failures; therefore these properties have to be taken into account early on in lead discovery. Commercial tools for predicting lipophilicity usually have been trained on small and neutral molecules, and are thus often unable to accurately predict in-house data. Using a modern Bayesian machine learning algorithm--a Gaussian process model--this study constructs a log D7 model based on 14,556 drug discovery compounds of Bayer Schering Pharma.

View Article and Find Full Text PDF

We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model.

View Article and Find Full Text PDF

Accurate in silico models for predicting aqueous solubility are needed in drug design and discovery and many other areas of chemical research. We present a statistical modeling of aqueous solubility based on measured data, using a Gaussian Process nonlinear regression model (GPsol). We compare our results with those of 14 scientific studies and 6 commercial tools.

View Article and Find Full Text PDF

In recent years, graphical models have become an increasingly important tool for the structural analysis of genome-wide expression profiles at the systems level. Here we present a new graphical modelling technique, which is based on decomposable graphical models, and apply it to a set of gene expression profiles from acute lymphoblastic leukemia (ALL). The new method explains probabilistic dependencies of expression levels in terms of the concerted action of underlying genetic functional modules, which are represented as so-called "cliques" in the graph.

View Article and Find Full Text PDF

We describe a classification system for a novel imaging method for arthritic finger joints. The basis of this system is a laser imaging technique which is sensitive to the optical characteristics of finger joint tissue. From the laser images acquired at baseline and follow-up, finger joints can automatically be classified according to whether the inflammatory status has improved or worsened.

View Article and Find Full Text PDF