Publications by authors named "Anton Samusev"

Acoustic nanocavities (ANCs) with resonance frequencies much above 1 GHz are prospective to be exploited in sensors and quantum operating devices. Nowadays, acoustic nanocavities fabricated from van der Waals (vdW) nanolayers allow them to exhibit resonance frequencies of the breathing acoustic mode up to ∼ 1 THz and quality factors up to ∼ 10. For such high acoustic frequencies, electrical methods fail, and optical techniques are used for the generation and detection of coherent phonons.

View Article and Find Full Text PDF
Article Synopsis
  • Ultrafast all-optical modulation is crucial for fast signal processing on compact optical chips, but current methods struggle with slow speeds and high costs in the visible spectrum.
  • The researchers developed a new modulator using MAPbBr perovskite metasurfaces that achieve record-high modulation depth of 2500% with a rapid modulation time of 440 femtoseconds.
  • This technology leverages easy-to-fabricate and inexpensive materials, making it a promising solution for practical applications in optics.
View Article and Find Full Text PDF

Guided 2D exciton-polaritons, resulting from the strong coupling of excitons in semiconductors with nonradiating waveguide modes, provide an attractive approach toward developing novel on-chip optical devices. These quasiparticles are characterized by long propagation distances and efficient nonlinear interactions but cannot be directly accessed from the free space. Here we demonstrate a powerful approach for probing and manipulating guided polaritons in a TaO slab integrated with a WS monolayer using evanescent coupling through a high-index solid immersion lens.

View Article and Find Full Text PDF

The increasing role of two-dimensional (2D) devices requires the development of new techniques for ultrafast control of physical properties in 2D van der Waals (vdW) nanolayers. A special feature of heterobilayers assembled from vdW monolayers is femtosecond separation of photoexcited electrons and holes between the neighboring layers, resulting in the formation of Coulomb force. Using laser pulses, we generate a 0.

View Article and Find Full Text PDF

Exciton-polaritons offer a versatile platform for realization of all-optical integrated logic gates due to the strong effective optical nonlinearity resulting from the exciton-exciton interactions. In most of the current excitonic materials there exists a direct connection between the exciton robustness to thermal fluctuations and the strength of the exciton-exciton interaction, making materials with the highest levels of exciton nonlinearity applicable at cryogenic temperatures only. Here, we show that strong polaronic effects, characteristic for perovskite materials, allow overcoming this limitation.

View Article and Find Full Text PDF

A micro- or nanosized electrically controlled source of optical radiation is one of the key elements in optoelectronic systems. The phenomenon of light emission via inelastic tunneling (LEIT) of electrons through potential barriers or junctions opens up new possibilities for development of such sources. In this work, we present a simple approach for fabrication of nanoscale electrically driven light sources based on LEIT.

View Article and Find Full Text PDF

The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. Topological polaritons (TPs) offer an ideal platform in this context, with unique properties stemming from resilient topological states of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) as a promising platform for topological polaritonics.

View Article and Find Full Text PDF

Electrically driven plasmonic nanoantennas can be integrated as a local source of the optical signal of advanced photonic schemes for on-chip data processing. The inelastic electron tunneling provides the photon generation or launch of surface plasmon waves. This process can be enhanced by the local density of optical states of nanoantennas.

View Article and Find Full Text PDF

Optical bound states in the continuum (BICs) provide a way to engineer very narrow resonances in photonic crystals. The extended interaction time in these systems is particularly promising for the enhancement of nonlinear optical processes and the development of the next generation of active optical devices. However, the achievable interaction strength is limited by the purely photonic character of optical BICs.

View Article and Find Full Text PDF

Metasurfaces offer great potential to control near- and far-fields through engineering optical properties of elementary cells or meta-atoms. Such perspective opens a route to efficient manipulation of the optical signals both at nanoscale and in photonics applications. In this paper we show that a local surface conductivity tensor well describes optical properties of a resonant plasmonic hyperbolic metasurface both in the far-field and in the near-field regimes, where spatial dispersion usually plays a crucial role.

View Article and Find Full Text PDF

The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies.

View Article and Find Full Text PDF

Enhancement of optical response with high-index dielectric nanoparticles is attributed to the excitation of their Mie-type magnetic and electric resonances. Here we study Raman scattering from crystalline silicon nanoparticles and reveal that magnetic dipole modes have a much stronger effect on the scattering than electric modes of the same order. We demonstrate experimentally a 140-fold enhancement of the Raman signal from individual silicon spherical nanoparticles at the magnetic dipole resonance.

View Article and Find Full Text PDF

All-dielectric "magnetic light" nanophotonics based on high refractive index nanoparticles allows controlling magnetic component of light at nanoscale without having high dissipative losses. The artificial magnetic optical response of such nanoparticles originates from circular displacement currents excited inside those structures and strongly depends on geometry and dispersion of optical materials. Here an approach for enhancing of magnetic response via resonant bianisotropy effect is proposed and analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • This study presents the first experimental observation of topological edge states in zigzag chains made of plasmonic nanodisks.
  • The researchers show that these edge states can be selectively activated using linearly polarized light and visualize them using near-field scanning optical microscopy.
  • The findings offer experimental evidence for a new way to control light at the nanoscale in complex topological structures.
View Article and Find Full Text PDF

The study of the resonant behavior of silicon nanostructures provides a new route for achieving efficient control of both electric and magnetic components of light. We demonstrate experimentally and numerically that enhancement of localized electric and magnetic fields can be achieved in a silicon nanodimer. For the first time, we experimentally observe hotspots of the magnetic field at visible wavelengths for light polarized across the nanodimer's primary axis, using near-field scanning optical microscopy.

View Article and Find Full Text PDF

We perform complex investigation of the distribution of electromagnetic fields in the vicinity of an array of silver nanoantennas, which can operate as an efficient light trapping structure in the visible spectral range. In theory, this array should support unusual collective modes that possess an advantageous distribution of local electric fields, ensuring both strong field localization beneath nanoantennas and a low level of optical losses inside the metal. Using an aperture-type near-field scanning optical microscope (NSOM), we obtain near-field patterns that show excellent agreement with the NSOM signal, directly reconstructed from rigorous numerical simulations using an approach based on the electromagnetic reciprocity theorem.

View Article and Find Full Text PDF

: We show that electric field imprinting technique allows for patterning of metal nanoparticles in the glass matrix at the subwavelength scale. The formation of glass-metal nanocomposite strips with a width down to 150 nm is demonstrated. The results of near-field microscopy of imprinted patterns are in good agreement with the performed numerical modeling.

View Article and Find Full Text PDF