Publications by authors named "Anton S Petrov"

The β and β' subunits of the RNA polymerase (RNAP) are large proteins with complex multi-domain architectures that include several insertional domains. Here, we analyze the domain organizations of RNAP-β and RNAP-β' using sequence, experimentally determined structures and AlphaFold structure predictions. We observe that lineage-specific insertional domains in bacterial RNAP-β belong to a group that we call BEAN (broadly embedded annex).

View Article and Find Full Text PDF

RiboVision2 is a web server designed to visualize phylogenetic, structural, and evolutionary properties of ribosomal RNAs simultaneously at the levels of primary, secondary, and three-dimensional structure and in the context of full ribosomal complexes. RiboVision2 instantly computes and displays a broad variety of data; it has no login requirements, is open-source, free for all users, and available at https://ribovision2.chemistry.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) establish the genetic code. Each aaRS covalently links a given canonical amino acid to a cognate set of tRNA isoacceptors. Glycyl tRNA aminoacylation is unusual in that it is catalyzed by different aaRSs in different lineages of the Tree of Life.

View Article and Find Full Text PDF

Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play.

View Article and Find Full Text PDF

Recent advances in Cryo-EM led to a surge of ribosome structures deposited over the past years, including structures from different species, conformational states, or bound with different ligands. Yet, multiple conflicts of nomenclature make the identification and comparison of structures and ortholog components challenging. We present RiboXYZ (available at https://ribosome.

View Article and Find Full Text PDF

The ribosomal core is universally conserved across the tree of life. However, eukaryotic ribosomes contain diverse rRNA expansion segments (ESs) on their surfaces. Sites of ES insertions are predicted from sites of insertion of micro-ESs in archaea.

View Article and Find Full Text PDF

Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs.

View Article and Find Full Text PDF

Evolution works by adaptation and exaptation. At an organismal level, exaptation and adaptation are seen in the formation of organelles and the advent of multicellularity. At the sub-organismal level, molecular systems such as proteins and RNAs readily undergo adaptation and exaptation.

View Article and Find Full Text PDF

We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one group to the other at each position of the alignment. The output distinguishes conserved, variable and signature positions.

View Article and Find Full Text PDF

SH3 and OB are the simplest, oldest, and most common protein domains within the translation system. SH3 and OB domains are β-barrels that are structurally similar but are topologically distinct. To transform an OB domain to a SH3 domain, β-strands must be permuted in a multistep and evolutionarily implausible mechanism.

View Article and Find Full Text PDF

Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts.

View Article and Find Full Text PDF

ProteoVision is a web server designed to explore protein structure and evolution through simultaneous visualization of multiple sequence alignments, topology diagrams and 3D structures. Starting with a multiple sequence alignment, ProteoVision computes conservation scores and a variety of physicochemical properties and simultaneously maps and visualizes alignments and other data on multiple levels of representation. The web server calculates and displays frequencies of amino acids.

View Article and Find Full Text PDF

The helical structures of DNA and RNA were originally revealed by experimental data. Likewise, the development of programs for modeling these natural polymers was guided by known structures. These nucleic acid polymers represent only two members of a potentially vast class of polymers with similar structural features, but that differ from DNA and RNA in the backbone or nucleobases.

View Article and Find Full Text PDF

Widespread testing for the presence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise, and/or instrumentation necessary to detect the virus by quantitative RT-PCR (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages.

View Article and Find Full Text PDF
Article Synopsis
  • - The ribosome's common core, made up of rRNA and ribosomal proteins, links all living organisms to a shared ancestor, with its rRNA closely resembling that of modern bacteria; in eukaryotes, this rRNA is much larger due to additional segments.
  • - The study reveals that two groups of archaea, Lokiarchaeota and Heimdallarchaeota, have ribosomal RNA that serves as a transition between prokaryotes and eukaryotes, featuring two significant expansion segments (ES9 and ES39) that contribute to their large size.
  • - Through experimental analyses, researchers found unique structural features in Asgard ES39s compared to eukaryotic ES39s, while still demonstrating
View Article and Find Full Text PDF

Widespread testing for the presence of the novel coronavirus SARS-CoV-2 in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages.

View Article and Find Full Text PDF

The close synergy between peptides and nucleic acids in current biology is suggestive of a functional co-evolution between the two polymers. Here we show that cationic proto-peptides (depsipeptides and polyesters), either produced as mixtures from plausibly prebiotic dry-down reactions or synthetically prepared in pure form, can engage in direct interactions with RNA resulting in mutual stabilization. Cationic proto-peptides significantly increase the thermal stability of folded RNA structures.

View Article and Find Full Text PDF

The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation.

View Article and Find Full Text PDF

Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions.

View Article and Find Full Text PDF

rRNA is the single most abundant polymer in most cells. Mammalian rRNAs are nearly twice as large as those of prokaryotes. Differences in rRNA size are due to expansion segments, which contain extended tentacles in metazoans.

View Article and Find Full Text PDF

Mitochondrial ribosomes (mitoribosomes) are essential components of all mitochondria that synthesize proteins encoded by the mitochondrial genome. Unlike other ribosomes, mitoribosomes are highly variable across species. The basis for this diversity is not known.

View Article and Find Full Text PDF

Life as we know it requires three basic types of polymers: polypeptide, polynucleotide, and polysaccharide. Here we evaluate both universal and idiosyncratic characteristics of these biopolymers. We incorporate this information into a model that explains much about their origins, selection, and early evolution.

View Article and Find Full Text PDF

Today, Mg is an essential cofactor with diverse structural and functional roles in life's oldest macromolecular machine, the translation system. We tested whether ancient Earth conditions (low O, high Fe, and high Mn) can revert the ribosome to a functional ancestral state. First, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) was used to compare the effect of Mg, Fe, and Mn on the tertiary structure of rRNA.

View Article and Find Full Text PDF

Functions, origins, and evolution of the translation system are best understood in the context of unambiguous and phylogenetically based taxonomy and nomenclature. Here, we map ribosomal proteins onto the tree of life and provide a nomenclature for ribosomal proteins that is consistent with phylogenetic relationships. We have increased the accuracy of homology relationships among ribosomal proteins, providing a more informative picture of their lineages.

View Article and Find Full Text PDF

The Universal Gene Set of Life (UGSL) is common to genomes of all extant organisms. The UGSL is small, consisting of <100 genes, and is dominated by genes encoding the translation system. Here we extend the search for biological universality to three dimensions.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont63gb826ev7vb8v5nlsbsjqs12matikh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once