We review the recent progress made in using holographic QCD to study hadronic contributions to the anomalous magnetic moment of the muon, in particular the hadronic light-by-light scattering contribution, where the short-distance constraints associated with the axial anomaly are notoriously difficult to satisfy in hadronic models. This requires the summation of an infinite tower of axial vector mesons, which is naturally present in holographic QCD models, and indeed takes care of the longitudinal short-distance constraint due to Melnikov and Vainshtein. Numerically the results of simple hard-wall holographic QCD models point to larger contributions from axial vector mesons than assumed previously, while the predicted contributions from pseudo-Goldstone bosons agree nicely with data-driven approaches.
View Article and Find Full Text PDFPhys Rev Lett
September 2015
We estimate the consequences of finite masses of pseudoscalar mesons on the decay rates of scalar glueballs in the Witten-Sakai-Sugimoto model, a top-down holographic model of low-energy QCD, by extrapolating from the calculable vertex of glueball fields and the η^{'} meson that follows from the Witten-Veneziano mechanism for giving mass to the latter. Evaluating the effect on the recently calculated decay rates of glueballs in the Witten-Sakai-Sugimoto model, we find a strong enhancement of the decay of scalar glueballs into kaons and η mesons, in fairly close agreement with experimental data on the glueball candidate f_{0}(1710).
View Article and Find Full Text PDFWe study the conductivity and shear viscosity tensors of a strongly coupled N=4 super-Yang-Mills plasma which is kept anisotropic by a θ parameter that depends linearly on one of the spatial dimensions. Its holographic dual is given by an anisotropic axion-dilaton-gravity background and has recently been proposed by Mateos and Trancanelli as a model for the preequilibrium stage of quark-gluon plasma in heavy-ion collisions. By applying the membrane paradigm which we also check by numerical evaluation of Kubo formula and lowest lying quasinormal modes, we find that the shear viscosity purely transverse to the direction of anisotropy saturates the holographic viscosity bound, whereas longitudinal shear viscosities are smaller, providing the first such example not involving higher-derivative theories of gravity and, more importantly, with fully known gauge-gravity correspondence.
View Article and Find Full Text PDFWe study (3+1)D kinetic (Boltzmann-Vlasov) equations for relativistic plasma particles in a one dimensionally expanding geometry motivated by ultrarelativistic heavy-ion collisions. We set up local equations in terms of Yang-Mills potentials and auxiliary fields that allow simulations of hard- (expanding-) loop dynamics on a lattice. We determine numerically the evolution of plasma instabilities in the linear (Abelian) regime and also derive their late-time behavior analytically, which is consistent with recent numerical results on the evolution of the so-called melting color-glass condensate.
View Article and Find Full Text PDFNon-Abelian plasma instabilities may be responsible for the fast apparent quark-gluon thermalization in relativistic heavy-ion collisions if their exponential growth is not hindered by nonlinearities. We study numerically the real-time evolution of instabilities in an anisotropic non-Abelian plasma with an SU(2) gauge group in the hard-loop approximation. We find exponential growth of non-Abelian plasma instabilities both in the linear and in the strongly nonlinear regimes, with only a brief phase of subexponential behavior in between.
View Article and Find Full Text PDF