Publications by authors named "Anton N Tcypkin"

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl to Br) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region.

View Article and Find Full Text PDF

Ghost imaging can be used to detect objects in a nonstationary environment or in the presence of variable ambient light, making it attractive when conventional imaging methods are ineffective. However, the conventional ghost imaging algorithm is susceptible to temporal fluctuations in the detected signal. In this work, we propose a polarization-multiplexed auxiliary laser channel propagating along the same optical path with the main one.

View Article and Find Full Text PDF

Lead halide perovskite nanoplatelets (NPls) attract significant attention due to their exceptional and tunable optical properties. Doping is a versatile strategy for modifying and improving the optical properties of colloidal nanostructures. However, the protocols for B-site doping have been rarely reported for 2D perovskite NPls.

View Article and Find Full Text PDF

Metal halide perovskite nanocrystals (NCs) attract much attention for light-emitting applications due to their exceptional optical properties. More recently, perovskite NCs have begun to be considered a promising material for nonlinear optical applications. Numerous strategies have recently been developed to improve the properties of metal halide perovskite NCs.

View Article and Find Full Text PDF

The generation of terahertz (THz) radiation during the propagation of subpicosecond pulses in liquid media is investigated using a theoretical model considering the relative contribution of Kerr and plasma nonlinearity. The dependences of the THz emission generation efficiency on the contribution of plasma nonlinearity with a fixed third-order nonlinearity value revealed the existence of weak and strong ionization modes. It is shown that the transition between these modes is determined by the ratio of plasma to Kerr nonlinearity coefficients and the pump energy.

View Article and Find Full Text PDF

By irradiating a water jet with double pulses, we demonstrate 4-fold higher THz wave generation than for a single pump pulse. The dependence of the enhanced THz signal on the temporal delay between two collinear pulses reveals the optimal time for launching signal pulse is near 2-4 ps, which corresponds to the time needed to create the complete pre-ionization state when sufficient electron density is already induced, and there is no plasma reflection of the pump pulse radiation. The increase in THz waves generation efficiency corresponds to the case of water jet excitation by the pulses with an optimal duration for a certain jet thickness, which is determined by the spatial pulse size.

View Article and Find Full Text PDF

Time-resolved terahertz spectroscopy has become a common method both for fundamental and applied studies focused on improving the quality of human life. However, the issue of finding materials applicable in these systems is still relevant. One of the appropriate solution is 2D materials.

View Article and Find Full Text PDF

Polar liquids are strong absorbers of electromagnetic waves in the terahertz range, therefore, historically such liquids have not been considered as good candidates for terahertz sources. However, flowing liquid medium has explicit advantages, such as a higher damage threshold compared to solid-state sources and more efficient ionization process compared to gases. Here we report systematic study of efficient generation of terahertz radiation in flat liquid jets under sub-picosecond single-color optical excitation.

View Article and Find Full Text PDF

The values of the nonlinear refractive index coefficient for various materials in the terahertz frequency range exceed the ones in both visible and NIR ranges by several orders of magnitude. This allows to create nonlinear switches, modulators, systems requiring lower control energies in the terahertz frequency range. We report the direct measurement of the nonlinear refractive index coefficient of liquid water by using the Z-scan method with broadband pulsed THz beam.

View Article and Find Full Text PDF