The significant biological and functional differences between small and large platelets suggested by recent studies could have profound implications for transfusion medicine. However, investigating the relationship between platelet size and function is challenging because separating platelets by size without affecting their properties is difficult. A standard approach is centrifugation, but it inevitably leads to premature activation and aggregation of separated platelets.
View Article and Find Full Text PDFThe majority of adoptive cellular therapies are produced from peripheral mononuclear cells obtained via leukapheresis and further enriched for the cells of interest (e.g., T cells).
View Article and Find Full Text PDFLeukapheresis is a common extracorporeal procedure for leukodepletion and cellular collection. During the procedure, a patient's blood is passed through an apheresis machine to separate white blood cells (WBCs) from red blood cells (RBCs) and platelets (PLTs), which are then returned to the patient. Although it is well-tolerated by adults and older children, leukapheresis poses a significant risk to neonates and low-weight infants because the extracorporeal volume (ECV) of a typical leukapheresis circuit represents a particularly large fraction of their total blood volume.
View Article and Find Full Text PDFThe isolation of a specific lymphocyte subset from blood is the required first step in the manufacturing of many novel cellular immunotherapies. Microfluidic size-based separation methods are poised to significantly simplify this process because they require neither centrifugation nor magnetic or fluorescent labeling to operate. Lymphocytes can be separated from red blood cells (RBCs) and platelets as well as monocytes and granulocytes because their size differs from each of these cell types.
View Article and Find Full Text PDFLeukapheresis, the extracorporeal separation of white blood cells (WBCs) from red blood cells (RBCs) and platelets (PLTs), is a life-saving procedure used for treating patients with cancer and other conditions, and as the initial step in the manufacturing of cellular and gene-based therapies. Well-tolerated by adults, leukapheresis poses a significant risk to neonates and low-weight infants because the extracorporeal volume (ECV) of standard centrifugation-based machines represents a particularly large fraction of these patients' total blood volume. Here we describe a novel high-throughput microfluidic device (with a void volume of 0.
View Article and Find Full Text PDF