Publications by authors named "Anton Le Brun"

The partitioning of viral fusion peptides in lipid membranes with varying order was investigated due to the fusion mechanism being a potential therapeutic approach. Using a planar bilayer model and advanced techniques such as neutron reflectometry (NR) and quartz crystal microbalance with dissipation (QCM-D), the structural aspects of peptide-lipid interactions were explored. The study focused on two target membranes: one forming a liquid-ordered domain and the other forming a liquid-disordered domain.

View Article and Find Full Text PDF

Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures.

View Article and Find Full Text PDF

The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed.

View Article and Find Full Text PDF
Article Synopsis
  • - The review highlights recent developments in sample environments used with neutron scattering techniques specifically for colloid and interface science.
  • - It covers various factors like temperature, pressure, and chemical reactions, and integrates methods involving light and electric/magnetic fields, including tandem X-ray techniques.
  • - The paper also discusses material selection for sample environments, data collection methods, and the emerging role of machine learning and artificial intelligence in this research area.
View Article and Find Full Text PDF

The growth of graphene on silicon carbide on silicon offers a very attractive route towards novel wafer-scale photonic and electronic devices that are easy to fabricate and can be integrated in silicon manufacturing. Using a Ni/Cu catalyst for the epitaxial growth of graphene has been successful in the mitigation of the very defective nature of the underlying silicon carbide on silicon, leading to a consistent graphene coverage over large scales. A more detailed understanding of this growth mechanism is warranted in order to further optimise the catalyst composition, preferably the use of characterization measurements.

View Article and Find Full Text PDF

Galinstan is the brand name for a low-melting gallium-based alloy, which is a promising nontoxic alternative to mercury, the only elemental metal found in the liquid state at room temperature. Liquid alloys such as Galinstan have found applications as electromechanical actuators, sensors, and soft contacts for molecular electronics. In this work, we validate the scope of Galinstan top contacts to probe the electrical characteristics of Schottky junctions made on Si(111) and Si(211) crystals modified with Si-C-bound organic monolayers.

View Article and Find Full Text PDF

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes.

View Article and Find Full Text PDF

Hypersaline environments are ubiquitous in nature and are found in myriad technological processes. Recent empirical studies have revealed a significant discrepancy between predicted and observed screening lengths at high salt concentrations, a phenomenon referred to as underscreening. Herein we investigate underscreening using a cationic polyelectrolyte brush as an exemplar.

View Article and Find Full Text PDF

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function.

View Article and Find Full Text PDF

: A membrane protein interaction with lipids shows distinct specificity in terms of the sterol structure. The structure of the sterol's polar headgroup, steroidal rings, and aliphatic side chains have all been shown to influence protein membrane interactions, including the initial binding and subsequent oligomerization to form functional channels. Previous studies have provided some insights into the regulatory role that cholesterol plays in the spontaneous membrane insertion of the chloride intracellular ion channel protein, CLIC1.

View Article and Find Full Text PDF

The Spatz neutron beam instrument is the second time-of-flight neutron reflectometer to be installed at the OPAL research reactor. The instrument was formerly the V18 BioRef reflectometer at the BER-II reactor in Berlin and was transferred to Australia in 2016. Subsequently the instrument was re-installed in the neutron guide hall of the OPAL reactor at the end position of the CG2B cold-neutron guide and recommissioned.

View Article and Find Full Text PDF

Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.

View Article and Find Full Text PDF

Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions.

View Article and Find Full Text PDF

Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (βLgA) and pectin as model protein and polysaccharide, respectively.

View Article and Find Full Text PDF

Traditionally, self-assembled monolayers formed on silicon require the removal of the insulating and chemically inert silica layer that naturally forms on the surface of crystalline silicon. The removal of silica is thought to be necessary in order to expose the conducting Si-H surface, which is reactive towards molecules. Here we report the unexpected result of electrochemical formation of thin organic films on silica-terminated silicon with silica thickness up to 20 nm.

View Article and Find Full Text PDF

Electro-polymerization of diazonium salts is widely used for modifying surfaces with thin organic films. Initially this method was primarily applied to carbon, then to metals, and more recently to semiconducting Si. Unlike on other surfaces, electrochemical reduction of diazonium salts on Si, which is one of the most industrially dominant material, is not well understood.

View Article and Find Full Text PDF

A depleted antimicrobial drug pipeline combined with an increasing prevalence of Gram-negative 'superbugs' has increased interest in nano therapies to treat antibiotic resistance. As cubosomes and polymyxins disrupt the outer membrane of Gram-negative bacteria via different mechanisms, we herein examine the antimicrobial activity of polymyxin-loaded cubosomes and explore an alternative strategy via the polytherapy treatment of pathogens with cubosomes in combination with polymyxin. The polytherapy treatment substantially increases antimicrobial activity compared to polymyxin B-loaded cubosomes or polymyxin and cubosomes alone.

View Article and Find Full Text PDF

Because they are firmly anchored to a noble metal substrate, tethered bilayer lipid membranes (tBLMs) are considerably more robust than supported lipid bilayers such as black lipid membranes (BLMs) (Cranfield et al. Biophys J 106:182-189, 2014). The challenge to rapidly create asymmetrical tBLMs that include a lipopolysaccharide outer leaflet for bacterial model membrane research can be overcome by the use of a Langmuir-Schaefer deposition protocol.

View Article and Find Full Text PDF
Article Synopsis
  • The BAM complex in Gram-negative bacteria assembles β-barrel proteins essential for various functions, including nutrient uptake and toxin export, but its assembly mechanism is not fully understood.
  • Researchers reconstituted BAM subunits into a biomimetic membrane and used QCM-D and neutron reflectometry to study their interactions and structural changes.
  • Results indicated that BamE or a BamDE dimer interacts with BamA, causing conformational changes, whereas BamB or BamD alone does not, and unfolded substrate proteins extend the POTRA domains of BamA to assist in membrane folding.
View Article and Find Full Text PDF

Thiols and disulfide contacts have been, for decades, key for connecting organic molecules to surfaces and nanoclusters as they form self-assembled monolayers (SAMs) on metals such as gold (Au) under mild conditions. In contrast, they have not been similarly deployed on Si owing to the harsh conditions required for monolayer formation. Here, we show that SAMs can be simply formed by dipping Si-H surfaces into dilute solutions of organic molecules or proteins comprising disulfide bonds.

View Article and Find Full Text PDF

Treatment of multidrug-resistant (MDR) bacterial infections increasingly relies on last-line antibiotics, such as polymyxins, with the urgent need for discovery of new antimicrobials. Nanotechnology-based antimicrobials have gained significant importance to prevent the catastrophic emergence of MDR over the past decade. In this study, phytantriol-based nanoparticles, named cubosomes, were prepared and examined by minimum inhibitory concentration (MIC) and time-kill assays against Gram-negative bacteria: , , and .

View Article and Find Full Text PDF

Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from the skin secretions of Australian tree frogs. In this work, the interaction of Mac1 with anionic phospholipid bilayers was investigated by NMR, circular dichroism (CD) spectroscopy, neutron reflectometry (NR) and molecular dynamics (MD).

View Article and Find Full Text PDF

In Gram-negative bacteria, the multi-protein β-barrel assembly machine (BAM) complex is a nanomachine playing a vital role in the process of assembling β-barrel proteins into the outer membrane (OM). The core component of this multiprotein complex, BamA, is an evolutionarily conserved protein that carries five polypeptide-transport-associated (POTRA) domains that project from the outer membrane. BamA is essential for chaperoning the insertion of proteins into the OM surface of bacterial cells.

View Article and Find Full Text PDF

We report the synthesis of covalently linked self-assembled monolayers (SAMs) on silicon surfaces, using mild conditions, in a way that is compatible with silicon-electronics fabrication technologies. In molecular electronics, SAMs of functional molecules tethered to gold sulfur linkages dominate, but these devices are not robust in design and not amenable to scalable manufacture. Whereas covalent bonding to silicon has long been recognized as an attractive alternative, only formation processes involving high temperature and/or pressure, strong chemicals, or irradiation are known.

View Article and Find Full Text PDF

Little is known experimentally about the detailed orientation of membrane-bound maculatin 1.1 (Mac1), an antimicrobial peptide from the skin secretions of Australian tree frogs. In this work multiple N-labelled or H-labelled Mac1 with dodecylphosphocholine (DPC) micelles and isotropic DMPC/DHPC (q = 0.

View Article and Find Full Text PDF