Functional genomics with libraries of knockout alleles is limited to non-essential genes and convoluted by the potential accumulation of suppressor mutations in knockout backgrounds, which can lead to erroneous functional annotations. To address these limitations, we constructed genome-wide libraries of conditional alleles based on the auxin-inducible degron (AID) system for inducible degradation of AID-tagged proteins in the budding yeast Saccharomyces cerevisiae. First, we determined that N-terminal tagging is at least twice as likely to inadvertently impair protein function across the proteome.
View Article and Find Full Text PDFSelective degradation of unnecessary or abnormal proteins by the ubiquitin-proteasome system is an essential part of proteostasis. Ubiquitin ligases recognize substrates of selective protein degradation and modify them with polyubiquitin chains, which mark them for proteasomal degradation. Substrate recognition by ubiquitin ligases often involves degradation signals or degrons, which are typically short linear motifs found in intrinsically disordered regions, e.
View Article and Find Full Text PDFSingle ribonucleoside monophosphates (rNMPs) are transiently present in eukaryotic genomes. The RNase H2-dependent ribonucleotide excision repair (RER) pathway ensures error-free rNMP removal. In some pathological conditions, rNMP removal is impaired.
View Article and Find Full Text PDFFaithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood.
View Article and Find Full Text PDFN-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior.
View Article and Find Full Text PDFA healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively.
View Article and Find Full Text PDFWhole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event.
View Article and Find Full Text PDFPooled genetic screening is a powerful method to systematically link genotype to phenotype and gain insights into biological processes, but applying it to visual phenotypes such as cell morphology or protein localization has remained a challenge. In their recent work, Fowler and colleagues (Hasle et al, 2020) describe an elegant approach for high-throughput cell sorting according to visual phenotypes based on selective photoconversion. This allows combining the advantages of high-content phenotyping by fluorescence microscopy with the efficiency of pooled screening to dissect complex phenotypes.
View Article and Find Full Text PDFPolyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling.
View Article and Find Full Text PDFTail-anchored (TA) proteins insert post-translationally into the endoplasmic reticulum (ER), the outer mitochondrial membrane (OMM) and peroxisomes. Whereas the GET pathway controls ER-targeting, no dedicated factors are known for OMM insertion, posing the question of how accuracy is achieved. The mitochondrial AAA-ATPase Msp1 removes mislocalized TA proteins from the OMM, but it is unclear, how Msp1 clients are targeted for degradation.
View Article and Find Full Text PDFHere we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.
View Article and Find Full Text PDFBackground: The proteome of mitochondria comprises mostly proteins that originate as precursors in the cytosol. Before import into the organelle, such proteins are exposed to cytosolic quality control mechanisms. Multiple lines of evidence indicate a significant contribution of the major cytosolic protein degradation machinery, the ubiquitin-proteasome system, to the quality control of mitochondrial proteins.
View Article and Find Full Text PDFMost eukaryotic proteins are N-terminally acetylated. This modification can be recognized as a signal for selective protein degradation (degron) by the N-end rule pathways. However, the prevalence and specificity of such degrons in the proteome are unclear.
View Article and Find Full Text PDFThe spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear.
View Article and Find Full Text PDFStable unannotated transcripts (SUTs), some of which overlap protein-coding genes in antisense direction, are a class of non-coding RNAs. While case studies have reported important regulatory roles for several of such RNAs, their general impact on protein abundance regulation of the overlapping gene is not known. To test this, we employed seamless gene manipulation to repress antisense SUTs of 162 yeast genes by using a unidirectional transcriptional terminator and a GFP tag.
View Article and Find Full Text PDFThe yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist, as their construction is extremely expensive and laborious. To overcome these limitations, we developed a SWAp-Tag (SWAT) method that enables one parental library to be modified easily and efficiently to give rise to an endless variety of libraries of choice.
View Article and Find Full Text PDFThe nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis.
View Article and Find Full Text PDFCdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a two-step mechanism of loading the Cdc42 antagonist Nba1 into CRMs to mark these compartments as refractory for a second round of Cdc42 activation.
View Article and Find Full Text PDF