Erythropoietin (EPO) is a pleiotropic cytokine that classically drives erythropoiesis but can also induce bone loss by decreasing bone formation and increasing resorption. Deletion of the EPO receptor (EPOR) on osteoblasts or B cells partially mitigates the skeletal effects of EPO, thereby implicating a contribution by EPOR on other cell lineages. This study was designed to define the role of monocyte EPOR in EPO-mediated bone loss, by using two mouse lines with conditional deletion of EPOR in the monocytic lineage.
View Article and Find Full Text PDFThe two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss.
View Article and Find Full Text PDFImmunotherapy with anti-CD20-specific antibodies (rituximab), has become the standard of care for B cell lymphoproliferative disorders and many autoimmune diseases. In rheumatological patients the effect of rituximab on bone mass yielded conflicting results, while in lymphoma patients it has not yet been described. Here, we used cross-sectional X-ray imaging (CT/PET-CT) to serially assess bone density in patients with follicular lymphoma receiving rituximab maintenance therapy.
View Article and Find Full Text PDFErythropoietin (EPO) is a key regulator of erythropoiesis. However, EPO receptors (EPO-Rs) are also expressed on non-erythroid cell types, including myeloid and bone cells. Immune cells also participate in bone homeostasis.
View Article and Find Full Text PDF