Publications by authors named "Anton Golovnin"

Su(Hw) belongs to the class of proteins that organize chromosome architecture, determine promoter activity, and participate in formation of the boundaries/insulators between the regulatory domains. This protein contains a cluster of 12 zinc fingers of the C2H2 type, some of which are responsible for binding to the consensus site. The Su(Hw) protein forms complex with the Mod(mdg4)-67.

View Article and Find Full Text PDF

Chromatin architecture is critical for the temporal and tissue-specific activation of genes that determine eukaryotic development. The functional interaction between enhancers and promoters is controlled by insulators and tethering elements that support specific long-distance interactions. However, the mechanisms of the formation and maintenance of long-range interactions between genome regulatory elements remain poorly understood, primarily due to the lack of convenient model systems.

View Article and Find Full Text PDF

The dADD1 and dXNP proteins are orthologues of the ADD and SNF2 domains of the vertebrate ATRX (Alpha-Thalassemia with mental Retardation X-related) protein. ATRX plays a role in general molecular processes, such as regulating chromatin status and gene expression, while dADD1 and dXNP have similar functions in the genome. Both ATRX and dADD1/dXNP interact with various protein partners and participate in various regulatory complexes.

View Article and Find Full Text PDF

CP190 is a co-factor in many architectural proteins, being involved in the formation of active promoters and insulators. CP190 contains the N-terminal BTB/POZ (Broad-Complex, Tramtrack and Bric a brac/POxvirus and Zinc finger) domain and adjacent conserved regions involved in protein interactions. Here, we examined the functional roles of these domains of CP190 in vivo.

View Article and Find Full Text PDF

Drosophila CP190 and CP60 are transcription factors that are associated with centrosomes during mitosis. CP190 is an essential transcription factor and preferentially binds to housekeeping gene promoters and insulators through interactions with architectural proteins, including Su(Hw) and dCTCF. CP60 belongs to a family of transcription factors that contain the N-terminal MADF domain and the C-terminal BESS domain, which is characterized by the ability to homodimerize.

View Article and Find Full Text PDF

Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins.

View Article and Find Full Text PDF

Suppressor of Hairy-wing [Su(Hw)] is one of the best characterized architectural proteins in Drosophila and recruits the CP190 and Mod(mdg4)-67.2 proteins to chromatin, where they form a well-known insulator complex. Recently, HP1 and insulator partner protein 1 (HIPP1), a homolog of the human co-repressor Chromodomain Y-Like (CDYL), was identified as a new partner for Su(Hw).

View Article and Find Full Text PDF

Suppressor of Hairy-wing [Su(Hw)] is a DNA-binding architectural protein that participates in the organization of insulators and repression of promoters in Drosophila. This protein contains acidic regions at both ends and a central cluster of 12 zinc finger domains, some of which are involved in the specific recognition of the binding site. One of the well-described in vivo function of Su(Hw) is the repression of transcription of neuronal genes in oocytes.

View Article and Find Full Text PDF

Su(Hw) belongs to the class of proteins that organize chromosome architecture and boundaries/insulators between regulatory domains. This protein contains a cluster of 12 zinc finger domains most of which are responsible for binding to three different modules in the consensus site. Su(Hw) forms a complex with CP190 and Mod(mdg4)-67.

View Article and Find Full Text PDF

The best-studied insulator complex consists of two BTB-containing proteins, the Mod(mdg4)-67.2 isoform and CP190, which are recruited to the chromatin through interactions with the DNA-binding Su(Hw) protein. It was shown previously that Mod(mdg4)-67.

View Article and Find Full Text PDF

The best-studied Drosophila insulator complex consists of two BTB-containing proteins, the Mod(mdg4)-67.2 isoform and CP190, which are recruited cooperatively to chromatin through interactions with the DNA-binding architectural protein Su(Hw). While Mod(mdg4)-67.

View Article and Find Full Text PDF

Recent data suggest that insulators organize chromatin architecture in the nucleus. The best characterized Drosophila insulator, found in the gypsy retrotransposon, contains 12 binding sites for the Su(Hw) protein. Enhancer blocking, along with Su(Hw), requires BTB/POZ domain proteins, Mod(mdg4)-67.

View Article and Find Full Text PDF

Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF.

View Article and Find Full Text PDF

Despite increasing data on the properties of replication origins, molecular mechanisms underlying origin recognition complex (ORC) positioning in the genome are still poorly understood. The Su(Hw) protein accounts for the activity of best-studied Drosophila insulators. Here, we show that Su(Hw) recruits the histone acetyltransferase complex SAGA and chromatin remodeler Brahma to Su(Hw)-dependent insulators, which gives rise to regions with low nucleosome density and creates conditions for ORC binding.

View Article and Find Full Text PDF

Chromatin insulators are special regulatory elements involved in modulation of enhancer-promoter interactions. The best studied insulators in Drosophila require Suppressor of Hairy Wing [Su(Hw)], Modifier of mdg4 [Mod(mdg4)] and centrosomal 190 kDa (CP190) proteins to be functional. These insulator proteins are colocalized in nuclear speckles named insulator bodies.

View Article and Find Full Text PDF

Chromatin insulators block the action of transcriptional enhancers when interposed between an enhancer and a promoter. An Flp technology was used to examine interactions between Drosophila gypsy and Wari insulators in somatic and germ cells. The gypsy insulator consists of 12 binding sites for the Su(Hw) protein, while the endogenous Wari insulator, located on the 3' side of the white gene, is independent from the Su(Hw) protein.

View Article and Find Full Text PDF

The white gene, which is responsible for eye pigmentation, is widely used to study position effects in Drosophila. As a result of insertion of P-element vectors containing mini-white without enhancers into random chromosomal sites, flies with different eye color phenotypes appear, which is usually explained by the influence of positive/negative regulatory elements located around the insertion site. We found that, in more than 70% of cases when mini-white expression was subject to positive position effects, deletion of the white promoter had no effect on eye pigmentation; in these cases, the transposon was inserted into the transcribed regions of genes.

View Article and Find Full Text PDF

The complexity of regulatory systems in higher eukaryotes, featuring many distantly located enhancers that nonetheless properly activate the target promoters, has prompted the hypothesis that the action of enhancers should be restricted by insulators. Continuing our research on the functional role of insulators and the consequences of their interaction in Drosophila, we studied the interplay of different Su(Hw)-dependent Drosophila insulators. The set of transgenic constructs comprised two consecutive genes (yellow and white) with their enhancers and insulator elements differently arranged in between and/or around the gene(s).

View Article and Find Full Text PDF

Chromatin insulators are thought to restrict the action of enhancers and silencers. The best-known insulators in Drosophila require proteins such as Suppressor of Hairy wing (Su(Hw)) and Modifier of mdg4 (Mod(mdg4)) to be functional. The insulator-related proteins apparently colocalize as nuclear speckles in immunostained cells.

View Article and Find Full Text PDF

Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for spreading of repressive chromatin. The Su(Hw) protein is responsible for activity of the best-studied Drosophila insulators. Here we demonstrate that an evolutionarily conserved protein, E(y)2/Sus1, is recruited to the Su(Hw) insulators via binding to the zinc-finger domain of Su(Hw).

View Article and Find Full Text PDF

The Drosophila gypsy insulator contains binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein. Enhancer and silencer blocking require Su(Hw) recruitment of Mod(mdg4)-67.2, a BTB/POZ domain protein that interacts with Su(Hw) through a carboxyl-terminal acidic domain.

View Article and Find Full Text PDF

Previously we described highly unstable mutations in the yellow locus, induced by the chimeric element and consisting of sequences from a distally located 1A unique genomic region, flanked by identical copies of an internally deleted 1.2-kb P element. Here we show that a sequence, which is part of the yellow 1A region, can be transmitted to the AS-C by successive inversion and reinversion generated by yellow- and AS-C-located P elements.

View Article and Find Full Text PDF

The insulator element from the gypsy transposon is a DNA sequence that blocks activation of a promoter by a transcriptional enhancer when placed between them. The insulator contains reiterated binding sites for the Suppressor of Hairy-wing [Su(Hw)] zinc-finger protein. A protein encoded by another gene, modifier of mdg4 [mod(mdg4)], is also required for the enhancer-blocking activity of the Su(Hw) insulator.

View Article and Find Full Text PDF

The best characterized chromatin insulator in Drosophila is the Suppressor of Hairy wing binding region contained within the gypsy retrotransposon. Although cellular functions have been suggested, no role has been found yet for the multitude of endogenous Suppressor of Hairy wing binding sites. Here we show that two Suppressor of Hairy wing binding sites in the intergenic region between the yellow gene and the Achaete-scute gene complex form a functional insulator.

View Article and Find Full Text PDF

Previously we have described highly unstable yellow mutations induced by chimeric elements that consist of genomic sequences originating from different regions of the X chromosome flanked by identical copies of an internally deleted 1.2 kb P element. To study further the origin and the mechanism of formation of chimeric mobile elements, we analyzed complex y-sc mutations, induced by inversions between P elements located in the neighboring yellow and scute loci.

View Article and Find Full Text PDF