General dynamic scenes involve multiple rigid and flexible objects, with relative and common motion, camera induced or not. The complexity of the motion events together with their strong spatio-temporal correlations make the estimation of dynamic visual saliency a big computational challenge. In this work, we propose a computational model of saliency based on the assumption that perceptual relevant information is carried by high-order statistical structures.
View Article and Find Full Text PDFA hierarchical definition of optical variability is proposed that links physical magnitudes to visual saliency and yields a more reductionist interpretation than previous approaches. This definition is shown to be grounded on the classical efficient coding hypothesis. Moreover, we propose that a major goal of contextual adaptation mechanisms is to ensure the invariance of the behavior that the contribution of an image point to optical variability elicits in the visual system.
View Article and Find Full Text PDF